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Abstract | i

Abstract
The global energy consumption of mobile networks is rapidly increasing due to the exponential
growth of mobile network traffic. The advent of next-generation cellular technologies such
as fifth-generation (5G) and beyond promises higher network throughput and lower latency
but also demands higher power consumption for its denser base station (BS) deployment and
more energy-intensive processors. It is one of the key design pillars of next-generation mobile
networks to improve network energy efficiency. In this thesis, we aim to address this problem
by applying machine learning to analyze mobile traffic and control the operation of 5G BSs
with the goal of reducing network energy consumption while dynamically meeting the network
traffic demand. To obtain some preliminary insights into the temporal and spatial patterns
of mobile network traffic, we first analyze a real-world network flow dataset collected by a
Swedish mobile operator. We find that mobile traffic exhibits a strong periodicity in time and
a distinct locality in space. In order to develop a simulation environment to train and evaluate
the artificial intelligence (AI)-based BS control algorithm, we apply a clustering algorithm to
categorize the network traffic with different latency requirements into five traffic scenarios, e.g.
urban, rural, and office. Other necessary network models are also implemented such as energy
consumption, massive MIMO (multiple-input multiple-output) channel, user association, etc.
in the simulation environment endeavoring to mimic the real-world 5G network.
The main contribution of this thesis is the development of a multi-agent reinforcement learning
algorithm to jointly control the operations of 5G BSs such as multi-level sleeping, antenna
switching, and user association. The algorithm is designed to minimize the total energy
consumption of a multi-cell 5G network while preserving its overall quality of service (QoS).
The trained algorithm has shown its ability to adaptively save energy by switching on/off the
sleep modes and antennas of BSs according to the varying traffic intensity. Moreover, the
multi-agent BS control policy produced by the algorithm has also demonstrated collaborative
behaviours such as user offloading that reduces inter-cell interference which degrades the QoS.
The evaluation results show that in comparison to the always-on configuration, the proposed
algorithm can reduce the total energy consumption of a network by about 50%, double that of
today’s symbol-level sleeping strategy (25%), while with negligible degradation of QoS. The
algorithm is also shown to be robust to variations in the volume and the QoS requirement of the
network traffic after being evaluated in different traffic scenarios.



ii | Sammanfattning

Sammanfattning
Mobilnätens globala energiförbrukning ökar snabbt på grund av den exponentiella tillväxten av
mobilnätstrafik. Tillkomsten av nästa generations cellulära teknologier som 5G och framåt lovar
högre nätverksgenomströmning och lägre latens, men kräver också högre strömförbrukning för
dess tätare basstation (BS)-utbyggnad och mer energikrävande processorer. Det är en av de
viktigaste designpelarna i nästa generations mobilnät för att förbättra nätverkets energieffek-
tivitet. I det här examensarbetet syftar vi till att ta itu med detta problem genom att tillämpa
maskininlärning för att analysera mobiltrafik och styra driften av 5G BS:er med målet att
minska nätverkets energiförbrukning samtidigt som efterfrågan på nätverkstrafik dynamiskt
tillgodoses. För att få några preliminära insikter om de tidsmässiga och rumsliga mönstren
för mobilnätstrafik, analyserar vi först en verklig nätverksflödesdatauppsättning som samlats
in av en svensk mobiloperatör. Vi finner att mobiltrafik uppvisar en stark periodicitet i tid och
en distinkt lokalitet i rymden. För att utveckla en simuleringsmiljö för att träna och utvärdera
den AI-baserade BS-kontrollalgoritmen, tillämpar vi en klustringsalgoritm för att kategorisera
nätverkstrafiken med olika latenskrav i fem trafikscenarier, t.ex. stad, landsbygd och kontor.
Andra nödvändiga nätverksmodeller implementeras också, såsom energiförbrukning, massiv
MIMO-kanal, användarassociation, etc. i simuleringsmiljön som strävar efter att efterlikna det
verkliga 5G-nätverket.
Det huvudsakliga bidraget från denna avhandling är utvecklingen av en multi-agent förstärk-
ningsinlärningsalgoritm för att gemensamt styra driften av 5G BS:er som sömn på flera
nivåer, antennväxling och användarförening. Algoritmen är utformad för att minimera den
totala energiförbrukningen för ett flercells 5G-nätverk samtidigt som dess övergripande ser-
vicekvalitet (QoS) bevaras. Den tränade algoritmen har visat sin förmåga att adaptivt spara
energi genom att slå på/stänga av vilolägen och antenner för BS:er enligt den varierande
trafikintensiteten. Dessutom har multi-agent BS-kontrollpolicyn som produceras av algoritmen
också visat samverkansbeteenden såsom användaravlastning som minskar inter-cellinterferens
som försämrar QoS. Utvärderingsresultaten visar att den föreslagna algoritmen kan minska
den totala energiförbrukningen för ett nätverk med cirka 50%, dubbelt så stor som dagens
sovstrategi på symbolnivå (25%), jämfört med konfigurationen som alltid är på. försämring av
QoS. Algoritmen har också visat sig vara robust mot variationer i volymen och QoS-kravet för
nätverkstrafiken efter att ha utvärderats i olika trafikscenarier.
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Chapter 1

Introduction

1.1 Background
Recent years have seen exponential growth in global mobile network traffic, estimated to double
every two years, reaching 115 EB (115 × 1018 bytes) per month by the end of 2022, as shown
in Figure 1.1 [1]. The explosion of traffic has led to a rapid increase in the energy consumption
of global cellular networks, reaching around 293 TWh per year in 2021, accounting for about
1.16% of the global electricity demand [6, 7]. In response to the challenge of global warming
and in line with the United Nations Sustainable Development Goals (SDGs), a majority of
GSMA (Global System for Mobile Communications) members, accounting for 63% of the
global mobile industry by revenue, have commited to science-based targets (SBTs), aiming for
net-zero greenhouse gas emissions by 2050 to limit global warming to well-below 2°C above
pre-industrial levels [8, 9].
Mobile big data analytics and artificial intelligence (AI) are emerging as powerful forces
transforming business and society, and the potential of these technologies to unlock life-
changing benefits is only beginning to be seen. When grounded in ethical principles that protect
privacy, these solutions can truly change the world for the better. PwC estimates that, over
the next 5 years, 150 million people could be positively impacted by mobile big data and AI
solutions, equating to 3% of the world population [10].

1.2 Problem
With the proliferating cellular connectivity, it is becoming increasingly important to attain a
comprehensive understanding of the temporal and geographical patterns of the cellular traffic.
Internet service providers (ISPs) can exploit the traffic patterns in time and space and deploy
dedicated network management or pricing policies in order to improve quality of service (QoS)
and reduce capital or operational expenses, including energy consumption. Pattern recognition
of the cellular traffic can also inform the government of land usage, human activities, and so on.
Analyses of real-world datasets have revealed that cellular traffic possesses a distinctive temporal
periodicity and geographical locality. Machine learning (ML), given the well-organized data
collection provided by ISPs and the distinguishable data patterns, thereafter, can be effectively
applied to classify and predict cellular traffic patterns. The first part of this thesis aims to use ML
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Figure 1.1: Global mobile network data traffic (FWA represents Fixed Wireless Access) [1].
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to classify the cellular traffic patterns, to investigate their temporal and geographical distribution
for each class of cells, and to extract a traffic profile in order to generate synthetic mobile traffic
in the network simulation.
The advent of fifth-generation (5G) cellular networks is set to bring about a range of en-
hancements, including lower latency, higher data rates, and wider connectivity, compared to
previous generations. The deployment of a denser network of base stations (BSs) is expected
to accommodate these improvements. However, this densification will result in a considerable
increase in energy consumption, as BSs are the most energy-intensive components of a wireless
network and are responsible for approximately 80% of a network’s energy consumption [11].
Furthermore, the higher bit-rate demands of 5G will require the use of more power-hungry
processors and radio frequency hardware at BSs, leading to an estimated two to three times
higher energy consumption compared to the fourth-generation (4G) BSs [12]. This increase
in energy consumption is not sustainable in the long term, making the deployment of green
networks essential. A green network is one that takes sustainability into account, ensuring that
the network equipment and architecture are energy efficient across varying network conditions.
While 5G presents challenges in terms of energy consumption, it also offers opportunities to
implement new methods for energy conservation.
The traffic of a mobile network is highly dynamic and the latency a user can tolerant is usually
very tight. Furthermore, the control of such mobile network systems as 5G and beyond possesses
a high complexity. A multi-cell network, in addition, requires the collaboration of the BSs to
save energy jointly, which may lead to a different multi-agent policy than the optimal one for
each agent considered separately. Therefore, the required BS control policy must be dynamic,
adaptive, and cooperative in nature. Nowadays, ML and its sub-fields like deep learning and
reinforcement learning (RL) are seen as universal and powerful methods to solve a wide range
of complicated problems. The performance of these methods largely depends on the quantity
and quality of the data used to train the ML models. The availability of data processing
devices and techniques in mobile networks like deep packet inspection (DPI) has enabled
the application of ML in mobile network management and design, including radio resource
allocation, user association, and sleep mode management. These ML-based mechanisms allow
wireless networks to be predictive and proactive with regard to a mercurial mobile traffic
environment so as to improve energy efficiency, as well as the QoS.

1.3 Purpose
The purpose of this thesis is to reduce the energy consumption of mobile networks by leveraging
the flexibility introduced by 5G technology, such as extended sleep periods and adjustable
resource block (RB) sizes, and by designing an autonomous advanced sleep mode (ASM)
management system. This will be achieved through the following subgoals:

1. Classifying the cells based on their network traffic in different delay categories to
investigate the temporal and geographic patterns of cellular traffic in different scenarios.

2. Implementing a multi-cell 5G network simulation environment with realistic modeling
of massive MIMO channels, power consumption, etc., for traffic analysis and RL for BS
control.
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3. Designing an RL algorithm for multi-agent BS control of antenna switching, ASM
management, and user association in the simulated network, in order to cooperatively
save network power consumption without compromising QoS.

The thesis will assess the potential energy savings of these design approaches and compare them
to two benchmarks: a baseline control policy without any BS sleeping and a simple policy that
BSs automatically switch to the shallowest sleep mode.
This work aims to contribute to the pursuit of SDGs by reducing the carbon footprint of the
information and communication technology (ICT) sector. BS operation accounts for around
80% of the total energy consumption of a mobile network. Improving the energy efficiency of
BSs is therefore a key way to improve the sustainability of mobile networks. The energy-saving
potential of BS control is significant, as mobile traffic varies greatly in time and space, and
a BS can deactivate some of its components during periods of low traffic to reduce its power
consumption without degrading performance.
This thesis prioritizes ethical considerations, crediting and citing any ideas or work used by
other researchers in the references section. Any ethical issues arising from the implementation
of the work are also avoided.

1.4 Research Questions
1. How to make reliable cellular traffic categorization that is aware of network services with

different delay requirements, based on the collected dataset of mobile network traffic
flows?

2. How to realistically model the 5G network including massive MIMO channel, power
consumption, network service, BS sleeping, user equipments, packet drop, etc.?

3. How to generate synthetic mobile traffic based on the cellular traffic categorization to
evaluate the performance of the energy-saving BS control policies?

4. How multi-agent RL (MARL) can be utilized in adaptively controlling the number of
antennas, user association, and ASMs of multiple BSs that act cooperatively in order to
optimize energy efficiency without compromising network QoS, according to the network
traffic? Which MARL algorithm is best suitable for this task?

5. How to quantitatively measure the performance of different BS control policies and the
advantage of the MARL-based policy over benchmark policies?

1.5 Research Methodology
In this research, we apply a sequence of procedures like data cleaning, temporal aggregation,
and discrete Fourier transform (DFT) to produce weekly profiles that characterize the cellular
traffic. The data was collected by a Swedish mobile operator, containing sampled records
with detailed network flow information, including time duration, traffic volume, application
name, etc. Due to ethical considerations and to ensure trust, accountability, mutual respect,
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and fairness, sensitive information such as the locations of most BSs are not exposed and all
users were anonymized. Machine learning approaches are applied to classify the cells and the
temporal and spatial patterns of each category of cellular traffic are analyzed.
In order to tackle the problem of energy-efficient BS operation in multi-cell 5G networks, we
develop AI algorithms to achieve dynamic and cooperative multi-agent BS control. We first
develop a 5G network simulation environment with synthetic traffic following the patterns
of previously obtained cellular traffic categories. Then a MARL agent is trained in this
environment to produce a desirable BS control policy. The algorithms were evaluated through
in the simulation and compared to multiple baselines, including a vanilla system without any
energy saving mechanisms, and a system with a simple policy that automatically puts idle BSs
to the shallowest sleep mode.

1.6 Delimitations
The focus of this thesis is on reducing the total energy consumption of multiple BSs in a multi-
cell network.
The scope of this thesis is limited to the development and evaluation of a MARL algorithm
for controlled BS sleeping to save energy. Specifically, the thesis proposes a novel approach
to address the problem of balancing energy consumption and QoS in wireless networks using
a MARL approach. The thesis presents a mathematical model for representing the power
consumption of a BS in both operational and idle modes, and proposes an AI-based algorithm
to solve the optimization problem. The thesis uses simulations to evaluate the performance of
the proposed algorithm and its variations in terms of energy saving and QoS improvement.
However, the thesis has several limitations. Firstly, the proposed model for power consumption
may not completely reflect the behavior of real-world BSs, and further work is needed to
develop a more accurate model. Secondly, the proposed algorithm may not be scalable to
larger networks, and further research is needed to investigate the algorithm’s performance
under different network topologies and traffic conditions. Thirdly, the thesis assumes that user
QoS requirements are fixed and does not consider the dynamic nature of user demands in
practice. Future work could explore dynamic user demands and adapt the algorithm to meet
these demands.
In addition, the thesis proposes several directions for future work, including improving the
network model and algorithm, refining the treatment of different QoS requirements, comparing
the proposed approach with other RL algorithms, exploring the end-to-end optimization of the
network, developing risk-aware RL algorithms, and dynamic functional split optimization based
on user delay requirements.
Finally, the thesis does not address other important issues related to wireless communication
systems, such as security, risk management, or network planning. Further work is needed to
integrate the proposed algorithm into practical wireless communication systems and to evaluate
its performance under different real-world scenarios.

1.7 Structure of the Thesis
The remainder of this thesis is organized as follows:
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• Chapter 2 conducts data analysis of a cellular traffic dataset and ML-based classification
based on the weekly traffic profiles of cells in different service categories. The temporal
and geographic distributions of the traffic of each class of cells are then investigated to
provide insights of the mobile network traffic.

• Chapter 3 presents the application of a multi-agent RL (MARL) algorithm, MAPPO, in
the energy-efficient management of a multi-cell 5G network. The model of a simplified
5G network is given as the simulation environment for the MARL agent training. Some
preliminary knowledge of RL and MARL is then provided to the readers, and the MAPPO
algorithm and its implementation for this multi-BS control problem are explained. Finally,
the analysis and results of the proposed MARL method, including training curves, analysis
of the trained policy, the test performance in simulation, and comparisons with other
benchmark policies.

• Chapter 4 concludes the research studies conducted in this thesis and points out its
limitations and potential extensions in future work.
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Chapter 2

Cellular Traffic Analysis and Catego-
rization

In the first part of this thesis, we aim to analyze real-world mobile network traffic and categorize
its temporal patterns using unsupervised machine learning. Different network traffic scenarios
are consequently developed representing typical traffic patterns in different areas such as rural
areas, urban areas, office areas, and so on. The different delay limits of various network services
are considered in the analysis.

2.1 Dataset and Visualization
In this section, we describe the dataset we used, introduce service QoS specifications, and
perform statistical analysis and spectral filtering for preprocessing.

2.1.1 Dataset description
The cellular traffic dataset is collected by one of the largest Swedish mobile operators and
contains sampled and anonymized mobile network flows in a period of two months – from
November 25th 2021 to January 25th 2022. In the dataset, network flows were sampled (by
a rate of about 1%) and inspected using the Deep Packet Inspection (DPI) technique, which
can record flow information, including its belonging site ID, start time, duration, identified
application, downlink and uplink data size, etc. Some of the example flow records are shown
in Table 2.1. There might be multiple cells, which represent the sectors of a BS, belonging to a
single BS, which is reported as a “site” in the dataset. In this paper, we do the clustering based
on the sites (BSs).
The “app name” and “app category” correspond to the application and the service category that
it belongs, respectively. The DPI engine was able to identify the traffic flows in a time granularity
of 2 seconds and differentiate between about 300 applications, such as HTTPS, Facebook,
WhatsApp, Youtube, etc. This allows us to classify the sites based on their traffic patterns
in different categories according to the delay requirement of the provided services. During
preprocessing, we ignored several application categories including “Network Infrastructure”,
“Software Update”, “Unidentified”, and “Unknown”, accounting to less than 1% of the total
traffic.
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site ID start timestamp duration (ms) app name app category downlink bytes uplink bytes

28705xxx 2021-11-xx xx:58:52 1 586 HTTPS Web 4 168 2 156
28163xxx 2021-11-xx xx:59:14 705 WeChat Real-Time Communication 10 523 896
80590xxx 2021-11-xx xx:59:21 52 Apple Game Center Gaming 6 537 685
70945xxx 2021-11-xx xx:59:31 2 566 Facebook Social Networking 16 339 10 815
31077xxx 2021-11-xx xx:59:52 4 437 SVTplay Multimedia Streaming 1 558 264 18 798

Table 2.1: Sample flows from the dataset.

Delay category Packet delay budget Service category Example applications

Delay stringent 50 ms Real-time gaming Steam, League Of Legends, Minecraft
Real-time communication Apple FaceTime, Skype, WeChat, WhatsApp

Delay sensitive 150 ms Multimedia streaming Spotify, Netflix, YouTube, SVTplay, HBO
Social networking Facebook, Instagram, Snapchat, TikTok

Delay tolerant 300 ms

Web applications Google, Amazon, Paypal, Uber, HTTPS
Business Microsoft Office 365, Salesforce, LDAP

Mail Gmail, Microsoft Exchange, IMAP, POP3
Database Microsoft SQL Server, MySQL, PostgreSQL

File hosting Apple iCloud, Dropbox, Microsoft OneDrive
Peer to peer Bitcoin, BitTorrent, DHT, Xunlei

Tunnel and remote access IPSec, SSH, Telnet, OpenVPN, TLS

Table 2.2: Delay categorization in line with the 3GPP QoS specifications.

After excluding the traffic in these categories, the dataset consists of 1.0× 108 mobile network
flows involving 9861 sites and a total traffic volume of 321.2 TB.

2.1.2 Service QoS specifications

The 3rd Generation Partnership Project (3GPP) is a consortium with a number of standards
organizations that develop protocols for mobile telecommunications. According to a 3GPP
specification document TS 23.501 [13], there is a certain packet delay budget for each category
of network service to specify its QoS requirement, and based on that, we can divide the delay
budgets into three categories: delay stringent, delay sensitive, and delay tolerant. These three
categories of services that we consider include almost all mobile network traffic generated in
daily life, and we specify their delay budgets and delay categories in Table 2.2.

2.1.3 Statistical analysis

After examining the network flows in our dataset, 21.10 TB (6.57%) of the total traffic is delay
stringent, 159.25 TB (49.58%) is delay sensitive, and 140.84 TB (43.85%) is delay tolerant.
The statistics of the network traffic of BSs in each delay category is demonstrated by box plots
in Figure 2.1. We can see that delay-stringent traffic is much less than dalay-sensitive traffic
or delay-tolerant traffic. The traffic distribution is skewed to the higher end and all outliers are
high-traffic ones as well. The data sizes of flows, as shown in the histogram in Figure 2.2, is a
unimodal distribution close to log-normal. We plot the histogram of total flow counts of sites
in Figure 2.3. We can see that the distribution of the flow counts is bimodal - we consider it as
a mixture of a "low-traffic" unimodal distribution and a "high-traffic" unimodal distribution.
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Figure 2.1: Box plot of the total traffic per each cite over two months in each delay category.
The vertical axis is in log scale.

2.1.4 Geographical distribution

There are 287 sites in our dataset with available geographical information as well as other
information, including site name, coverage radius, etc. We can see that the spatial and temporal
patterns of cellular traffic are correlated from Figure 2.5 and 2.6. Figure 2.5 shows the
geographical distributions of cellular traffic in a medium-sized city in Sweden on weekdays and
weekends. We can see traffic is more concentrated in city centers on weekdays, especially in the
city, and it becomes more diverse on weekends. Figure 2.6 shows the geographical distributions
of the traffic at four different times of the day.

2.1.5 Data preprocessing

Missing values

For flow records with missing values necessary in our traffic analysis, for example site ID,
timestamp, or uplink/downlink bytes, we remove them from the dataset before the subsequent
preprocessing steps.



10 | Cellular Traffic Analysis and Categorization

0.004 0.016 0.062 0.250 1 4 16 64 256 1024 4096 16384

1

2

5

10

2

5

100

2

5

1000

flow size (MB)

co
un

t

Figure 2.2: Histogram of data sizes of network flows.

Filtration of low-traffic sites

In order to make sure that the number of DPI-sampled flows of a site is sufficiently large to reveal
a temporal pattern with statistical significance, we filter out the sites with a low flow count. As
we have considered the sites as a mixture of a "low-traffic" group and a "high-traffic" group,
we want to find a percentile of the sites where we can divide the bimodal distribution of flow
counts into two unimodal distributions corresponding to these two groups. Therefore we plot
the site flow counts versus the percentiles from 2% to 98% as the blue line in Figure 2.4. We
take the derivative of this curve as the red line in the same figure, in order to find the percentile
corresponding to the bottom of the valley between the two unimodal distributions in Figure 2.3.
Since there are the least sites in the bins at the bottom of the valley, the flow counts per percentile
should change the fastest, which means the bottom of the valley in the histogram corresponds
to the local maximum of the red curve. As shown in Figure 2.4, this point locates at the 40th
percentile and corresponds to a count of 650 flows, on average 10.5 sampled flows per day. We
consider sites with a flow count below this threshold as low-traffic sites and filter them out.
After that, we plot the histogram of flow counts again for the remaining sites in Fig. 2.7. We can
see that both the flow counts and the total traffic volumes now follow a unimodal distribution
similar to log-normal (the horizontal axis is in the logarithmic scale). As a result, 40% of the
sites are filtered out as low-traffic and 5902 sites remain in the dataset. The remaining total
traffic, however, has 99.6% of the original volume, and the total number of flows is also 99.6%
of its original amount.
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Figure 2.3: Histograms of total flow counts of sites in logarithmic scale. The red dash line
divides the sites into "low-traffic" and "high-traffic" as explained in Figure 2.4.

Temporal traffic profiling

To analyze the temporal patterns of the cellular traffic with different QoS requirements, for each
site and each delay category, we aggregate the uplink and downlink traffic of network flows into
time slots of half an hour. Formally speaking, for a site c with sampled flows f c

i , i = 1, . . . , Nc,
where Nc is the number of flows in site c, and v (f) , t0 (f) , t1 (f) , q (f) represent the total
traffic data, the start time, the end time, and the delay category of flow f , we define the traffic
profile of c in delay category k as

x (c, k) =
(
x1, . . . , xT/D

)
, (2.1)

with

xi =
Nc∑

j=1,q(fc
j )=k

v
(
f c
j

)
t1
(
f c
j

)
− t0

(
f c
j

)
×
∣∣[t0 (f c

j

)
− T0, t1

(
f c
j

)
− T0

]
∩ [(i− 1)D, iD]

∣∣ , (2.2)

where D is the length of the time slot, i.e. 30 minutes, T is the overall time span of flows in the
dataset, i.e. 62 days or 1488 hours, T0 is the start time of the first day when traffic was sampled
in the dataset. For a flow f c

j , we assume a uniform data rate throughout its duration, calculated

as v(fc
j )

t1(fc
j )−t0(fc

j )
. The term |[. . .] ∩ [. . .]| gives the time duration this flow occurred in the i-th

time slot.
After that, in order to reduce the dimensionality of the traffic profiles as well as their variance
(by increasing the sample size of aggregated flows in each time slot), we further take the average
of the traffic in time slots in monthly (31 days), weekly, and daily periods. For a period of H
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Figure 2.4: The blue line represents percentiles of total flow counts of sites and the red line
represents its "derivative" or rate of change. We can see that the peak of the red line locates at
the local minimum of the histogram in Figure 2.3. We consider this point as the dividing point
between the mixture of two unimodal distributions of flow counts.

days, the traffic profile of c in delay category k is

xH (c, k) =
(
x̄H
1 , . . . , x̄

H
H/D

)
, (2.3)

with

x̄H
i =

∑T/D

j=1,j+dH≡i−1 (modH/D)
x (c, k)j∑T/D

j=1,j+dH≡i−1 (modH/D)
1

, (2.4)

where dH is an offset constant to permute the traffic profile cyclically such that xH (c, k) starts
on day 1st of a month for H = 31 days and starts on Monday for H = 7 days.
Figure 2.8 shows the average traffic patterns of all sites in these three time scales. We can
see that the monthly network traffic has less variance but more irregularity in comparison to
those in weekly and daily periods. Although the traffic pattern in the weekly period seems quite
repetitive every day, there are still varieties, the most distinctive among which is the difference
between traffic patterns on weekdays and weekends. Therefore, to build a representative profile
of the network traffic of a site, we choose to use its weekly traffic profiles in the aforementioned
three delay categories. The resulting traffic profile of a site can be illustrated in Figure 2.9. For
each delay category, its traffic profile is a 7 × 48 = 336 dimensional array. Consequently, the
dataset is transformed into a 5902× 3× 336 dimensional array.
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Figure 2.5: Geographical distribution of cellular traffic on weekdays and weekend in the region.
The color scale indicates the total traffic of a day averaged per day.
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Figure 2.6: Geographical distribution of cellular traffic in the city at different times of a day.
The color scale indicates total traffic in two hours averaged per day.
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Figure 2.7: Flow count and traffic volume distributions of sites in logarithmic scale after
filtration of low-traffic sites.
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Figure 2.8: Patterns of the average cellular traffic in different time scales.
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2.1.6 Spectral filtering

Since cellular traffic depends on human activity, its pattern demonstrates strong periodicity, as
shown in Figure 2.8(b). Therefore, for each traffic profile, we apply fast Fourier transform (FFT)
to obtain the a frequency spectrum. Given a weekly traffic profile

x = (x1, x2, . . . , xN) ,

where N = 336 as we determined in the last section, we apply standard scaling (to make
the profile zero-mean and unit-variance) followed by FFT to transform it into the frequency
spectrum by calculating

Xk =
N∑
t=1

xt − x̄

σx

exp

(
−2πtk

N
i

)
, k = 0, 1, . . . , N − 1, (2.5)

where x̄ = 1
N

∑N
t=1 xt, σx =

√
1
N

∑N
t=1 (xt − x̄)2, and i is the imaginary unit. k stands for

frequency, i.e. the number of cycles in the period N , and Xk is the complex Fourier coefficient
that estimates the magnitude and phase of the sinusoidal component of the profile with frequency
k. Note that the standard scaling before the FFT makes the Fourier coefficients independent of
the magnitude of the traffic volume.
In order to denoise the traffic profiles and reduce their dimensionality, we only select a few
significant frequencies in the spectrum and drop the rest. We use power to measure the
significance of each frequency in each profile, which is defined as

Pk = |Xk|2 , (2.6)

for frequency k = 0, 1, . . . , N − 1. For each site and each delay category, we perform
this transformation to the weekly traffic profile and obtain the Fourier coefficients and the
corresponding power spectrum. Taking the average of the powers of the same frequency of
the weekly traffic over all sites, we obtain the power spectrum as shown in Figure 2.10. We can
observe that daily (1), half-daily (2), and weekly (1/7) are the 3 most distinctive periodicities of
the weekly traffic.
We want to select M frequencies with the highest powers in the spectrum to filter the frequency
spectrum of the weekly cellular traffic. To measure how good the spectral filtering is in the sense
of maintaining the original traffic pattern, we subtract the weekly traffic profile reconstructed
from the selected frequencies using inverse fast Fourier transformation (IFFT) from the original
(standardized) traffic series, to obtain a residual series, as shown in Figure 2.12 (a).
If the filtered traffic series captures most of the original series’ seasonal component, then the
residual series should show little seasonality. This can be verified by a low auto-correlation of
the residual series, as shown in Figure 2.13. In our experiment, we set M = 17, because it is
the smallest value of M to produce a low auto-correlation of the residual series. The selected
frequencies are labeled in orange in Figure 2.12 (b).
For the cellular traffic of every site in each delay category, we produce three variants of time
series as its vectorization:

1. Standardized: the standardized time series of its weekly traffic. Its dimensionality is 336.
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Figure 2.10: Power spectrum of average weekly cellular traffic. Orange labels indicate
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Figure 2.11: Box plot of spectral power distribution for each service category and for weekly,
daily, and half-daily frequencies.

2. Filtered (frequency): the Fourier coefficients of the selected frequencies after FFT of the
standardized series. Since the Fourier coefficients are complex numbers, we split their
real and imaginary parts and combine them into a single vector. Thus its dimensionality
is 2M = 34.

3. Filtered (time): the time series reconstructed from the filtered frequency spectrum by
IFFT. Its dimensionality is 336, the same as the original.

Finally, for each variant of vectorization, we concatenate the time series of delay-stringent,
delay-sensitive, and delay-tolerant traffic together as a single vector to describe the full traffic
pattern of a site. As a result, the vectorizations in the time domain have a dimensionality of
1008 and the vectorization in the filtered frequency domain has a dimensionality of 102.
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Figure 2.12: Spectral filtering of a typical weekly cellular traffic pattern in the time domain and
the frequency domain.

2.2 Cell Classification
In order to classify the base stations by their traffic patterns, we apply clustering on the
vectorizations of their weekly traffic obtained by the procedures we elaborated above. Clustering
is an unsupervised machine learning method to divide a set of points into groups with the
objective of maximizing the similarity of points within a group (or intra-cluster similarity) and
minimizing the the similarity of points between groups (or inter-cluster similarity).

2.2.1 Hierarchical clustering

We choose to use the method of hierarchical clustering [14], because it has good generality (no
assumptions in the distance measure) and provides a family of solutions with different number
of clusters (so that we do not need to predetermine the number of clusters). The pseudo-code
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Figure 2.13: Auto-correlation plot of the residual series. Low auto-correlation values indicate
that the seasonal components have been removed. The horizontal lines in the plot correspond
to 95% (solid) and 99% (dashed) confidence bands.

Algorithm 1 Hierarchical clustering algorithm

1: Input: Data vectors {xn}Nn=1, cluster-wise distance DIST (G,G ′)
2: A ← ∅
3: for n← 1, . . . , N do
4: A ← A∪ {{xn}}
5: end for
6: T ← A
7: while |A| > 1 do
8: G⋆1 ,G⋆2 ← argmin

G1,G2∈A
DIST (G1,G2)

9: A ← (A\{G⋆1}) \ {G⋆2}
10: A ← A∪ {G⋆1 ∪ G⋆2}
11: T ← T ∪ {G⋆1 ∪ G⋆2}
12: end while
13: Output: Tree T .

of the hierarchical clustering algorithm is given in Algorithm 1.
To calculate the distance between a pair of clusters, we apply Ward’s method, which aims to
minimize the intra-cluster variance [15].

DIST (G1,G2) =
∑

x∈G1∪G2

∥x− xG1∪G2∥
2
2

−
∑
x∈G1

∥x− xG1∥
2
2 −

∑
x∈G2

∥x− xG2∥
2
2

=
|G1| |G2|
|G1|+ |G2|

∥xG1 − xG2∥
2
2 ,

where xG = 1
|G|
∑

x∈G x, for some set of vectors G.
We can see in Algorithm 1 that hierarchical clustering yields a tree of successive agglomeration
(known as a dendrogram) of clusters, starting from treating each point as a single cluster and
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Figure 2.14: Ward linkage dendrogram of the traffic patterns of sites. Only the top 5 levels of the
tree is shown for the sake of visual clarity. The numbers in parentheses at the bottom of the figure
indicate the number of sites each truncated branch contains. The sub-trees’ colors distinguish
between different clusters obtained from this dendrogram for a certain cut-off distance threshold.
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Figure 2.15: Number of clusters per cut-off distance threshold from the Ward linkage hierarchy.
Both x-axis and y-axis are in log scales. At distance 200 all sites are included in the same cluster.
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Figure 2.16: DBI score per cut-off distance from the Ward linkage hierarchy. A cluster number
more than 30 or less than 3 is not considered because it will be difficult to find an interpretation
of the clustering result.

ending at including all points in the same cluster, as shown in Figure 2.14. Different numbers
of clusters can be obtained by setting different distance thresholds to cut off the agglomeration.
The higher the threshold, the less the total number of clusters. For the vectorization with spectral
filtering, the number of clusters in relation to the cut-off distance threshold can be seen in Figure
2.15.

2.2.2 Clustering performance metric

We use Davies-Bouldin index (DBI) to measure the quality of clustering, formulated as

1

C

C∑
i=1

max
1≤j≤C,j ̸=i

Si + Sj

∥Ai − Aj∥2
, (2.7)

where Si =
1
Ni

∑Ni

k=1 ∥Xi,k − Ai∥2, Xi,k is the vectorization of the cellular traffic of the k-th
site in cluster i, Ai =

1
Ni

∑Ni

k=1 Xi,k is the centroid of each cluster, C is the number of clusters
and Ni is the number of sites in the i-th cluster. Intuitively speaking, the DBI measures the ratio
of intra-cluster variance to inter-cluster variance. Therefore, the lower the DBI value, the better
quality the clustering has.
We compute Ward’s hierarchical clustering using each of the three variants of site traffic
vectorization we mentioned in Section 2.1.6. We have found that for Ward’s method, using the
traffic vectors after spectral filtering as input yields much lower (better) DBI than the original
standardized vectors. Not only that, after many experiments, by using different numbers of
selected frequencies and different cut-off distances, it turns out that after spectral filtering, the
traffic vectorization in either the frequency domain or the time domain (reconstructed by IFFT)
gives exactly the same clustering results. The underlying reason remains to be investigated.
If this fact could be established, we can compute Ward’s clustering more efficiently in the
frequency domain, because the vectorization has a much lower dimensionality than that in the
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time domain.

2.2.3 Selection of the optimal number of clusters

To find the optimal number of clusters, we compute the Ward’s hierarchical clustering again
using the vectorization in the filtered frequency domain, and we use different cut-off distances
to produce different clustering results. After that, we calculate the DBI of each group of clusters,
obtaining a relation between the cut-off distance and the DBI, as shown in Figure 2.16. We can
see that the DBI increases as the cut-off distance increases until there are 7 clusters. After that
it decreases and reaches its minimum when the number of clusters is 4. Therefore, we choose
to use 4 clusters in the following clustering analysis.

2.2.4 Benchmarking

In order to comprehensively compare the clustering performance, in addition to Ward’s
hierarchical clustering, we use K-means and Gaussian mixture models (GMM), both commonly
used clustering algorithms, to produce 4 clusters for each variant of site vectorization. The DBI
values of all these clustering results are shown in Table 2.3. We can see that Ward’s method
produces the best clustering with the cellular traffic vectors after spectral filtering, in either the
time domain or the frequency domain.

Filtered (time) Filtered (frequency) Standardized
GMM 22.978381 21.959638 9.779725
K-means 9.870880 9.727646 9.430667
Ward 7.928102 7.928102 12.923762

Table 2.3: DBI scores obtained by different clustering algorithms applied on different variants
of vectorization. The best scores are highlighted in bold.

2.3 Results and Analysis

2.3.1 Statistics

Including the low-traffic sites as cluster 0, we divide the sites into 5 clusters. Each cluster’s
size ratio and traffic ratio are shown in the bar charts in Figure 2.17. For each cluster and each
delay category, we investigate the traffic distribution of sites by calculating its statistics, such as
min/max/median sum rate and the hours in a week when the lowest/highest traffic density takes
place, as summarized in Table 2.4. We also visualize these distributions by box plots in Figure
2.18.

2.3.2 Temporal patterns

For each cluster and each service category, we take the average of the traffic profiles of all
sites in this cluster to obtain a representative profile. These representative profiles are shown
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category service mean std median max peak time min vale time

(1) rural

All 10.41 4.41 10.77 18.84 Sat 20:00 2.83 Wed 03:00
Delay Sensitive 5.15 2.30 5.17 9.81 Sun 20:00 1.35 Wed 03:00
Delay Stringent 0.68 0.26 0.72 1.26 Tue 13:00 0.18 Tue 04:00
Delay Tolerant 4.58 1.92 4.76 8.31 Sat 20:00 1.21 Wed 03:00

(2) residential

All 23.72 10.32 24.68 42.92 Mon 19:00 6.02 Wed 03:00
Delay Sensitive 12.00 5.48 12.33 22.76 Sat 20:00 3.07 Wed 03:00
Delay Stringent 1.61 0.72 1.72 3.58 Tue 14:00 0.24 Fri 04:00
Delay Tolerant 10.11 4.39 10.41 20.10 Mon 19:00 2.66 Wed 03:00

(3) urban

All 6.02 3.60 6.24 12.95 Mon 15:00 0.67 Thu 02:00
Delay Sensitive 3.30 1.99 3.35 7.85 Thu 16:00 0.36 Tue 03:00
Delay Stringent 0.32 0.32 0.28 2.73 Tue 08:00 0.01 Wed 03:00
Delay Tolerant 2.40 1.43 2.47 5.44 Tue 16:00 0.22 Thu 02:00

(4) office

All 5.23 2.90 5.09 12.00 Mon 11:00 0.97 Sun 04:00
Delay Sensitive 2.64 1.43 2.63 6.14 Mon 11:00 0.54 Fri 03:00
Delay Stringent 0.31 0.28 0.21 1.41 Tue 12:00 0.01 Fri 03:00
Delay Tolerant 2.28 1.25 2.19 5.38 Mon 11:00 0.40 Sun 04:00

Table 2.4: Statistics of the classified cellular traffic. The numeric values in this table are the
average sum rates (MB/s) of BSs in each cluster and each service category. “Peak time” and
“vale time” are the hour in a week where the network traffic is the busiest and the least busy
respectively.
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Figure 2.17: Distributions of the number of sites and the total traffic volume in each site category.
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Figure 2.18: Box plots of total site traffic for different site categories for each service category.
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as heatmaps in Figure 2.19 (only for total traffic). In order to compare the traffic patterns of
different clusters in each service category, we apply standard scaling to these weekly profiles
(so that they have the same scale) and plot them in Figure 2.20.
Finally, we think the comparison between traffic on weekdays and weekends is particularly
interesting. Therefore we calculate the average traffic volume per day per site on weekends
and on weekdays and take their ratio. Thus we obtain the distribution of weekend-weekday
traffic volume ratio of sites in each cluster. We use box plots to visualize these distributions in
Figure 2.21. We find that if we rank the clusters by weekend-weekday traffic ratio, the order
would be rural > residential > urban > office.
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Figure 2.19: Average weekly traffic profile in each site category.

2.3.3 Spectral patterns

We plot the power spectrum of the average traffic profile of sites in each category in Figure 2.22.
To visualize the clustering in the frequency domain, we scatter different categories of clusters
in the phase-amplitude 2D space as in Figure 2.23. For a traffic profile of some site and some
delay category, after we obtain the Fourier series by FFT, the phase and amplitude for a certain
frequency from the corresponding complex Fourier coefficient.
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Figure 2.20: Average weekly traffic patterns for each site cluster.

2.3.4 Geographical distribution

For privacy protection, only a small fraction of sites have geographic information available.
For these sites, we also know their radius of cell coverage. After assigning these sites different
categories as we obtained in the clustering results, we plot them on an interactive map, as in
Figure 2.24, using the same color scheme as in previous figures.

2.3.5 Interpretations of the site categorization

Combining the information about traffic statistics, weekly patterns, and geographical distribu-
tion about the result of site classification, we can attempt to interpret these categories:

(0) Low-traffic areas. Amounting to about 40% of all sites, the low-traffic sites only produced
0.4% of the total traffic.

(1) Rural areas. Almost all sites in the rural areas on the map are in the blue cluster (the few
exceptions are in the residential (green) category). Therefore we interpret the blue cluster
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Figure 2.21: Weekend-weekday traffic volume ratio for each site category.
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Figure 2.22: Spectral power of selected frequencies for each site category.
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Figure 2.24: Geographical distribution of clustered sites. This map contains virtually all the
sites with geographical information available.
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as rural sites. It is the largest class in our categorization, including a bit more than 50%
of the sites. Its average traffic per site is the second highest, only next to sites in the
residential areas. Its daily traffic pattern seems to have a single peak between 19pm and
21pm. For most of the rural sites, the traffic on weekends is busier than on weekdays.

(2) Residential areas. After looking at the map, the sites in the green cluster tend to locate in
residential areas. Its average traffic per site is exceptionally high, more than double that
of the rural category. Its daily traffic pattern is quite similar to the rural, with the busiest
hours between 19pm and 21pm. For about 75% of the residential sites, the traffic on
weekends is busier than on weekdays.

(3) Urban areas. Sites in the orange cluster tend to locate at shopping centers, bus or railway
stations, etc. For example a part of the airport and a shopping mall are in the orange
cluster. Daily traffic of these sites tend to have a peak in the morning at around 8am and a
peak in the evening between 15pm and 17pm. About 75% of the sites have a busier traffic
on weekdays than on weekends.

(4) Office areas. The distribution of sites in the red cluster concentrates in the city centers. It
has the lowest average traffic per site. Its daily traffic peaks at around 11am. For almost all
sites in this category, the traffic on weekdays is distinctively busier than that on weekends.
Therefore the red sites seem to be in areas where people work or study. For example the
sites in the university are red, and sites near government offices are red as well.
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Chapter 3

Multi-Agent RL for Energy-Efficient BS
control

In this part of the thesis, we are going to develop an AI algorithm for dynamic BS energy
saving. More specifically, a multi-agent reinforcement learning will be trained with the goal
of minimizing the total energy consumption of multiple BSs in a network while preserving the
overall quality of service by making decisions on the multi-level sleeping, antenna switching,
and user association of these BSs. Before we introduce the learning algorithm, we will first
go into the network system model as the simulation environment of the RL task, including
massive MIMO channel, power consumption, user arrival, advanced sleep modes, and service
mechanism. The modelling of user arrival links this part of the thesis with the first part by
mimicking the temporal patterns of different traffic scenarios we discovered by clustering. The
user association and inter-cell interference in the network necessitate the collaboration between
individual BSs. To this end, the problem will be modelled as a decentralized partially observable
Markov decision process (DEC-POMDP), and a multi-agent PPO (MAPPO) algorithm is
proposed to learn a collaborative BS control policy. One major challenge of reinforcement
learning in a DEC-POMDP is its non-stationary nature. The centralized training and distributed
execution mechanism has been shown to be capable of mitigating the non-stationary problem
and stabilizing the training. The trained MAPPO agent demonstrates an ability to significantly
improve the network energy efficiency, adaptively switch the BSs into different depths of
sleeping, reduce the inter-cell interference, and maintain a good quality of service.

3.1 Network System Model
In this section, we introduce the system modelling of the 5G network simulation. Seven
base stations are deployed in an open space area and massive MIMO channel with zero-force
precoding is considered in network service. Network traffic is simulated as a non-homogeneous
Poisson process of user arrival. Each user has a certain size of traffic demand and a delay budget
as described in Section 2.1.2. The arrival rate of the users is defined so as to mimic the traffic
pattern in each of the delay category in one of the traffic scenarios we discovered by the end
of Chapter 2. The available actions for the multi-agent BS control will be given in this section
and the effects of different actions will be briefly described to give some intuition of an energy-
efficient BS control policy.
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3.1.1 Environment Setup
We choose to use a square area of 1km×1km as our simulation environment. 7 base stations bc (
c = 0, 1, . . . , 6) are placed in this area – one ( b0) locates in the center and the other six surround
it as a hexagon with a side length of dBS = 400 m, as shown in Figure 3.1. The simulation will
proceed by time-stepping with a step length of dt = 1 ms. In each timestep, users may arrive
at any random location in the area. Each user equipment (UE) demands the network service in
one of the categories in Table 2.2. If a UE uk can establish connection with a BS, during the
period of service, its demand size, denoted by xk, will decrease with data rate rk. If uk is not
being served by any BS, its data rate rk = 0. Let the initial demand size of uk be xmax,k. We
denote the delay, i.e. the elapsed time since the arrival of uk, by τk, and then the demand size
of a UE over time follows the equation

xk (t) = max

0, xmax,k −
τk/dt∑
i=1

rk (i · dt) dt

 .

A UE will stay in the environment until its demand has been finished, i.e. xk = 0, or its
delay has reached the budget. Since each service category z has a different delay budget τ (z)max,
the maximum time uk can stay in the environment is τmax,k = τ

(zk)
max . Thus each UE requires

a minimum data rate rreq,k =
xmax,k
τmax,k

. At the time when uk quits the network, we denote its
remaining demand as χk and when χk > 0, it will be “dropped ”, which degrades the QoS of
uk. The network performance in our simulation is mainly based on the drop ratio χk

xmax,k
.

Figure 3.1: Base station layout in the simulation environment.

3.1.2 Traffic Model
Using cell classification, we want to create different cellular traffic scenarios for our simulation.
Since cells in the blue category generated a very low amount of traffic and their traffic profiles are
not as interesting as the rest three categories, we want to focus on these three in our simulation.
We call the green category scenario A, the orange category scenario B, and the red one scenario
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C. For each traffic scenario and each service category a, we aggregate the network flows into
time slots of 20 minutes (a slightly finer granularity than in previous clustering) and take the
weekly average, and then calculate the temporal-spatial traffic density κa,k in each time slot k in
Mb/s/km2. The traffic density throughout a week in each traffic scenario shown in Figure 3.2 for
delay stringent services, Figure 3.3 for delay sensitive services, and Figure 3.4 for delay tolerant
services.

scenario service category mean std min max peak time

A

Delay Stringent 1.474373 0.961889 0.030689 4.490108 Mon, 08:00
Delay Sensitive 23.147750 7.549798 7.950001 37.506251 Sat, 18:40
Delay Tolerant 45.372236 11.748287 21.799172 64.098010 Sat, 14:20
Total 69.994360 19.544497 31.707593 98.828759 Sat, 14:40

B

Delay Stringent 1.465876 0.978151 0.063916 3.815741 Mon, 08:20
Delay Sensitive 39.983041 14.343149 13.831339 62.412639 Sat, 18:40
Delay Tolerant 84.328688 28.138885 32.017521 127.785424 Mon, 15:00
Total 125.777605 42.154542 48.428296 180.999283 Fri, 13:40

C

Delay Stringent 1.207334 0.909703 0.007066 4.088568 Tue, 08:00
Delay Sensitive 35.837636 15.430952 10.215564 70.564844 Fri, 14:00
Delay Tolerant 70.689616 40.308315 18.243969 158.088487 Tue, 13:20
Total 107.734586 55.874644 31.578940 222.152462 Mon, 11:00

Table 3.1: Statistics of weekly cellular traffic in each scenario and service category.

We assume each UE only requests a single network flow and we model the traffic flows as a
Poisson process with an average arrival rate of λa,t, equivalently the probability of a new UE to
be generated in the area in a timestep. Its value follows the equation

λa,t =
κa,tA

xmax
dt.

Although in reality the demand size varies, this variability can be compensated by the arrival
rate λ, so it does not hurt to simplify the problem formulation by assuming a fixed demand size.
Since there are 3 service categories, there are a maximum of 3 new UEs to arrive in a timestep.
At the start of an episode of simulation, a traffic scenario will be chosen and random UEs will
be generated according to its traffic profile. Since the timestep is tiny in comparison to the time
scale of the traffic profile, we reduce the time scale of the traffic (only affecting traffic patterns;
the arrival rates remain the same) by a factor of 1/600 in the simulation.
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Parameter Value
Number of cells: C 7
Inter-site distance: dBS 400 m
Simulation area: A 1 km2

BS antenna height: hBS 30 m
UE average height: hUE 1.5 m
Simulation timestep: dt 1 ms
Time scale factor 1/600
Episode time length 1008 s
Delay budgets: τ (1/2/3)max 50/150/300 ms
File size: xmax 3 Mbits

Table 3.2: Parameters for network and traffic models.
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Figure 3.2: Weekly average traffic density of delay stringent services in different traffic
scenarios.
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Figure 3.3: Weekly average traffic density of delay sensitive services in different traffic
scenarios.
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Figure 3.4: Weekly average traffic density of delay tolerant services in different traffic scenarios.

3.1.3 Channel Model

In this multi-cell network, each BS bc has Mc active antennas and is serving Kc UEs. Thus there
are a total number of K =

∑C
c=1Kc UEs in this network. Let ck denote the index of the BS

serving UE uk for k = 1, . . . , K. We assume that the communication bandwidth is B Hz for
all the BSs. According to the Shannon channel capacity theorem, the maximum achievable data
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rate of user k is
rk = B log2 (1 + SINRk) , bit/s (3.1)

where SINR is the signal-to-interference-plus-noise ratio. Assuming perfect channel state
information is available to UEs, the pilot sequences are perfectly orthogonal from cell to cell,
and zero-forcing precoding is used at each BS, the SINR in a massive MIMO system is given
by [16]

SINRk =
Sk

Ik +N
=

(Mck −Kck)βck,kpck,k∑
c ̸=ck

βc,kpc +N
(3.2)

where Sk, Ik,N are the signal power, the interference power, and the noise power, respectively.
pc,k is the transmit power allocated to UE uk by BS bc ( pc,k = 0 for c ̸= ck) and pc =

∑
ck=c

pc,k

is the total output power of BS bc. Assuming that the average output power per antenna is a
constant value pavg, then ∑

ck=c

pc,k = pc = Mcpavg, c = 1, . . . , C.

Let Mmax be the maximum number of antennas each BS possesses, then the total output power
of each BS c follows the constraint

pc ≤Mmaxpavg.

βc,k ≥ 0 is the channel gain from BS bc to user k is modeled as

10 log10 βc,k = PL (dc,k) + χ,

where PL models the path loss, dc,k is the distance between BS bc and UE uk, and χ is a random
variable modeling shadow fading that follows a Gaussian distribution N (0, σSF).
According to the UMi (micro urban) model with NLOS in the 3GPP TR 38.901 report,

PL (dc,k) = 35.3 log10 dc,k + 22.4 + 21.3 log10 fc − 0.3 (hUE − 1.5)

and σSF = 7.82.
The noise power is given by

N = B10(N0+NB)/10,

where N0 is the noise power spectral density, and NB is a constant called “noise figure ”
depending on the type of BS.

3.1.4 Power Consumption Model
We can model the total power consumption of an active BS bc as follows [16]:

P active
c (Kc,Mc) = McPPA (pc) + PBB (Kc,Mc) + Poth, (3.3)

where PPA(pc) gives the power consumption of a PA when its average output power is pc,
PBB (Kc,Mc) is the baseband signal processing power when the BS serves Kc number of users
simultaneously with Mc number of antennas. Poth includes the load-independent power for
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site cooling, control signal, DC-DC conversion loss, etc. We assume the BS adopts envelope
tracking PA (ET-PA) since it is more energy-efficient, whose PC is given by [17]

PPA (p) =
p

(1 + ϵ)η
+

ϵPmax,PA

(1 + ϵ)η
,

where ϵ is a parameter depending on the PA type. According to [18], the baseband PC can be
calculated as

PBB (Kc,Mc) = Acd
∑
ck=c

Rk +
3∑

i=0

C0,iK
i
c +Mc

2∑
i=0

C1,iK
i
c,

whereC0,0 = Psyn, C0,1 = 0, C0,2 = 0, C0,3 =
B

3TcLBS
, C1,0 = PBS, C1,1 =

B
LBS

(
2 + 1

Tc

)
, C1,2 =

3B
LBS

, and
∑

ck=c Rk is sum rate of all UEs being served by bc (as given by equation 3.1).
When a BS bc is actively transmitting network data, we assume its average antenna power pc
is a constant value pavg, regardless of the number of UEs being served, unless there are no UE
requests at all and thus no transmission. In this case the BS is in the idle mode and its pc becomes
zero. Accordingly the PC is

P idle
c (Mc) = McPPA (0) + PBB (0,Mc) + Poth

= Mc

(
ϵPmax,PA

(1 + ϵ)η
+ PBS

)
+ Psyn + Poth.

We model the PC of a sleeping BS as a discounted value of P idle:

P sleep
c (Mc) = δscP

idle
c (Mc) ,

where sc is the sleep level of bc and δs is the discount parameter in sleep level s. The concept
of different sleep levels of a BS will be elaborated further in the next section.
If we also allow s = 0 to represent the active mode and let δ0 = 1, then the total PC of BS bc
can be expressed in a unified formula

Pc (Kc,Mc) = δsc (McPPA (pc) + PBB (Kc,Mc) + Poth) ,

where

pc =

{
pavg Kc > 0,

0 Kc = 0.
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Parameter Value
Bandwidth: B 2× 107 Hz
Noise power spectral density: N0 −204 dB ·J
Noise figure: NB 7 dB
Signal power threshold: pthr -87 dBm
Average transmit power per antenna: pavg 0.1 W
Minimum number of antennas: Mmin 16
Maximum number of antennas: Mmax 64
Maximum PA output power: Pmax,PA 3 W
Maximum PA efficiency at Pmax,PA: η 80%

ET-PA parameter: ϵ 0.0082
Local oscillator power: Psyn 1 W
BS circuit power: PBS 1 W
Other power: Poth 18 W
Power for data coding and decoding: Acd 1 W/(Gbit/s)
Channel coherence time: Tc 5000 symbols
BS computational efficiency: LBS 12.8 Gflops/W

Table 3.3: Parameters for channel and power models.

Figure 3.5: Power consumption P versus antenna number, UE number, and sleep level.

3.1.5 Advanced Sleep Modes

Even in the idle mode, the hardware of the BS remains fully active and ready to start serving
user demands instantly. However partial deactivation of the BS hardware, called BS sleeping,
can result in further PC reduction, with the cost of an activation delay when network requests
arrive, possibly to the detriment of the QoS experienced by UEs [19]. Since different hardware
components of the BS have different PC and activation delays, a multi-level sleeping mechanism
called advanced sleep modes (ASM) can be designed where the BS goes to deeper sleep levels
by incrementally deactivating components with longer activation delays, resulting in lower total
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PC but longer overall wake-up latency. As in [19], there can be 4 sleep modes (SM 1-4) with
an activation delay from 71 µs to 1s and Table 3.4 provided by [20] gives which parts of BS
hardware can be deactivated in each sleep mode.
In addition to user requests, a BS also need wake up periodically to broadcast controlling signals
in order to be detectable by UEs. Previous cellular technologies like LTE use a multitude of cell-
specific signals for channel estimation and synchronization like Cell-specific Reference Signals
(CRS), Primary and Secondary Synchronization Signals (PSS and SSS respectively). These
cell-specific signals have to be “always on ” (regardless of user requests) and the tight intervals
between them prevent BSs in an LTE system from going to sleep levels deeper than SM1. This
multi-level sleeping mechanism with activation for data or signal transmissions can be illustrated
in Figure 3.6.

Table 3.4: Deactivated sub-components in each sleep mode.
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Figure 3.6: ASM mechanism [2, 3].

However, the usage of SSB still imposes a constraint on the maximum duration of the sleeping
(160ms), thus rendering SM4 with a 1 second activation latency infeasible. In our experiment,
we also reckon that the activation delay of SM1 (71 µs) is so short that it can be switched to
greedily – whenever there is no traffic demand, with a negligible impact on the QoS. We choose
to combine the remaining two SMs with another level of sleeping investigated in [21], for which
the activation latency is 100ms. Including the active mode as sleep level 0, there are a total of 4
levels of sleeping in our experiment, each having a different PC discount and activation latency.
The values of these parameters are adopted from [21] [2] and shown in Table 3.5.

Sleep level s 0 (Active) 1 2 3

Activation latency ∆s 0 ms 1 ms 10 ms 100 ms
PC discount δs 1 0.69 0.5 0.29

Table 3.5: Operation modes

3.1.6 Base Station Actions

The set of actions a BS can take in the simulation is defined as

A =M×S × U , (3.4)

where
M = {−4, 0, 4}
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stands for the options of antenna switching: −4 for switching off 4 antennas, 0 for no switching,
and 4 for switching on 4 antennas;

S = {0, 1, 2, 3}

represents actions for switching to the corresponding sleep level s ∈ S;

C = {−1, 0, 1} (3.5)

determines user offloading: (1) Accept service requests without offloading (when the BS is
active, this means immediate connection, and when it is sleeping, the user will be put into the
service queue of this BS); (0) Offload new users to other BSs with U = 1; (-1) Detach all
associated users and offload new users. When a UE is associated to a BS, it is either being
served or waiting in the queue of this BS. For actions in U , −1 is particularly useful when a BS
goes to sleep, so that the detached UEs can request new connections with other BSs. However,
the choices remain available that a sleeping BS wants to keep its current UEs in its queue until it
wakes up again by taking action 0 or even put newly arrived UEs into its queue by taking action
1.
The action interval of a BS agent is set to 20ms, which is also the default periodicity of the SS
block transmission [2]. This period, however, is too long for SM1 and SM2 sleeping. Therefore,
we add a automatic wake-up mechanism to both SM1 and SM2, where the BS wakes up by itself
as long as there is traffic demand during sleeping at these two levels. Since the the activation
delay of SM1 is really short, we also want it to go back to SM1 once it has it has finished its
service, thus allowing it to automatically switch between the active mode when there is traffic
load and SM1 when there is no load. For SM2, however, it would have already taken 10ms to
wake up, so we let it keep awake before its next action.

3.1.7 Signal Coverage
In order for a UE uk to establish connection with BS bc, the maximal signal power it could
receive should be beyond a threshold pthr, which means

(Mc −Kc) βc,kpc = (Mc −Kc)
10−φ

dαc,k
pc ≥ pthr

dc,k ≤
(
(Mc −Kc)Mcpavg

10φpthr

)1/α

∝ ((Mc −Kc)Mc)
1/α .

We assume the signal coverage of bc is a circular area and this upper bound of distance is its
radius. bc is allowed to acquire information of all UEs in this circle, such as data rate, demand
size, service time limit, as a part of its observation in the environment.

3.1.8 User Association
For every UE uk newly arrived in the network environment, it sends a service request to the BS
bc containing itself in the signal coverage with the strongest average signal power it is estimated
to receive: (Mc −Kc) βc,k

Mc

Kc
pavg. If the BS is in the mode U = 1 as defined in Eq. 3.5, then
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the network connection will be established except that it is sleeping or its users are already full
( Kc = Mc − 1), in which case this UE will be put into its service queue qc. UEs in qc will
be automatically connected once bc has waked up and its UEs are not full. Otherwise, if bc
decides to offload new UEs (U = −1, 0 in Eq. 3.5), the UE has to continue to send another
service request to the BS which also contains itself in the signal coverage and provides the
next strongest signal coverage. The UE will repeat this process until it is attached to a BS, i.e.
connected if the BS is active or put into the queue if the BS is sleeping, or it has no more BSs
to send requests to. In the latter case the UE will remain idle and start to send a new round of
service requests in the next time step. Once attached to a BS, a UE will keep belonging to the
same BS until this BS decides to detach all its UEs (U = −1) or the UE leaves the network
environment with its traffic demand either finished or dropped.

3.1.9 Power Allocation

After the connection is established, the BS reallocates its output power using a relatively simple
method. As a first-order approximation, other conditions given the same, the data rate of a UE
uk satisfies rk = O (log2 pck,k), as can be seen in Eq. ( 3.1) and ( 3.2). Therefore, suppose
UE uk requires a minimum data rate of rmin,k = xk

τmax,k−τk
, we introduce a weight vector wp =

(wp,1, . . . , wp,Kc) to allocate the power as

pc,k =
wp,k∑
j wp,j

pc.

where
wp,k = 2rmin,k .

3.1.10 Effects of Actions on Signal Quality

To visualize the effect of BS actions (switching antennas, sleeping, accept/reject new connec-
tions) on the signal quality, we create a grid of points in the simulation area and for each point,
we use a UE as a test probe to measure the signal power, interference, and SINR at this location,
following the service mechanism we mentioned above to decide which BS to connect with.
In the Figure , with a slight abuse of notations, we denote “BS 0,1,2,3 have 64 antennas turned
on ” byM0123 = 64, “BS 0,1 are in sleep level 0, BS 2,3 are in sleep level 1 ” by s01 = 0, s23 = 1,
and “BS 0,1,2 accepts new connections with BS 3 rejects ” by a012 = 1, a3 = 0.
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(a) (b) (c)
M0123456 = 64, s0123456 = 0, a0123456 = 1 (the default BS configurations unless otherwise specified).

(d) s0 = 1

Max SINR slightly increases due to the
sleeping of BS 0, but min SINR decreases.

(e) s0135 = 1

Max SINR increases a lot and interestingly
min SINR also increases.

(f) s01346 = 1

Max SINR is slightly higher than (2) but min
SINR becomes slightly lower.

Figure 3.7: Visualizations of signal quality in the environment in different network configura-
tions.

With only BS 2, 4, 6 actively operating, both the maximum and the minimum SINR over the
whole area are increased in comparison to all 7 BSs turned on. This is due to the strong
interference between neighbor BSs when they are close to each other. As the ISD (inter-site
distance) gets larger, the maximum SINR in the area will certainly increase due to the decrease
of the interference, but the minimum SINR will increase first for the same reason, as can be
seen by comparing (c), (d), (e) in Figure 3.7. However, comparing (e) with (f), we see that the
decay of signal becomes faster than the decay of interference as two BSs get further apart.
The multi-cell network is an environment (as demonstrated in Figure 3.8) where the base
stations are agents that can take actions which will change the state of the environment. In
our simulation, this proceeds in discrete time steps t = 0, 1, 2, . . .. Some states, e.g. low power
consumption with satisfactory QoS, are more favorable than others, so we want the agents to
take actions so as to maximize the “favorableness ” of the state. The method of reinforcement
learning (RL) introduces reward as a numerical feedback given to an agent as a consequence
of its last action. The agent then must possess some learning capacity to decide on the optimal
action which is expected to maximize its reward, as well as some perception capacity to observe
the current state of the environment to inform its decision. Although the reward system is
not included in the simulation environment, we can integrate them together as a learning
environment. Consequently the paradigm of reinforcement learning can be summarized as a
continuous interaction of “ observation → action → reward → observation ” between the
agent(s) and the environment, as illustrated in Figure 3.9.
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Figure 3.8: A snapshot of the multi-cell network environment.

Figure 3.9: The agent-environment interaction in RL [4] .

3.2 Preliminaries on Reinforcement Learning

3.2.1 Space
The state space S of the environment is the set of all possible environment states.
The action space A of an agent is the set of actions it can take in any environment state.

3.2.2 Transition
An agent action a ∈ A can change the state of the environment from s to s′, which is called a
transition (s, a, s′).

3.2.3 Reward
After an agent takes an action a and the environment goes through a transition (s, a, s′), the
reward system will give a reward r = R (s, a, s′) to the agent, where R : S × A × S → R is
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called the reward model .

3.2.4 Trajectory

The interaction between the environment and an agent for a duration of T can be expressed in a
sequence of transitions and rewards is called a trajectory (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT ),
where rt = R (st, at, st+1). The trajectory space is thus ΓT = ΠT

t=0S ×R× A.

3.2.5 Dynamics and the Markov Property

The dynamics or transition model of an environment predicts the next state given the history
trajectory, which can be described by a probability distribution P [st+1 | s0, a0, . . . , st, at] at any
time t.
If a state st satisfies

P [st+1 | s0, a0, . . . , st, at] = P [st+1 | st, at] ,

which means that given the current state and actions, the next state is conditionally independent
of all previous actions and states, then st is said to have the Markov property, or simply Markov.
If all states of an environment are Markov, then its dynamics is said to be a Markov process.
The dynamics of an RL environment is typically assumed to be a Markov process and denoted
as P (s′ | s, a) = P [st+1 = s′ | st = s, at = a].

3.2.6 Policy

The policy of an agent defines how an agent will act in a environment state. A deterministic
policy is a direct mapping from state to action. A stochastic policy is a conditional probability
distribution in the action space given a state. At any timestep t, a deterministic policy gives
at = π (st), while a stochastic policy gives P [at = a | st = s] = π (a | s).

3.2.7 Return and Value Functions

The return Gt is the sum of discounted rewards in all future steps after t:

Gt =
∞∑
k=0

γkrt+k,

where γ ∈ [0, 1] is called the discount. Generally γ needs to be less than 1 in order to ensure
the convergence of the infinite series, as well as prioritizing immediate rewards over delayed
rewards. Meanwhile a γ close to 1 encourages the agents to learn a “far-sighted” policy, i.e. to
be considerate of a sufficiently long-term future.
Assuming the Markov property, the value of a state s is defined as the expected return

Vπ (s) = Eπ [Gt | st = s] .
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The value of an action a in state s is then defined as

Qπ (s, a) = Eπ [Gt | st = s, at = a] .

Note that the return, thus the value of a state or an action, is dependent on the policy.

3.2.8 Markov Decision Process
If the environment dynamics is a Markov process, then tuple (S,A, P,R, γ) defines a Markov
decision process (MDP),
Under a certain policy π, an MDP allows us to predict the distribution of the next state
Pπ [st+1 | st] given only the current state, and from st+1 we can infer about st+2. Iterating this
process, we can infer Pπ [st+k | st] any time in the future, and consequently estimate the state
value Vπ (st) = Eπ

[∑∞
k=0 γ

krt+k

]
.

3.2.9 Optimal Value Functions
For a state s, its maximum value under all possible policies is called its optimal value

V ∗ (s) = max
π

Vπ (s) .

Similarly the optimal value of an action is

Q∗ (s, s) = max
π

Qπ (s, a) .

And they have the relation
V ∗ (s) = max

a∈A
Q∗ (s, a) .

An MDP problem is said to be solved if an optimal policy π∗ is found under which all states
have their optimal value, i.e.

Vπ∗ (s) = V ∗ (s) , ∀s ∈ S.

3.2.10 Bellman Equations
We can derive the relations between the state-value function V and the action-value function Q:

Vπ (s) =
∑
a∈A

π (a | s)Qπ (s, a) ,

Qπ (s, a) = R (s) + γ
∑
s′∈S

P (s′ | s, a)Vπ (s
′) .

Inserting these equations into each other, we derive what called the Bellman equations for V
and Q

Vπ (s) = Eπ [rt + γVπ (st+1) | st = s] , (3.6)
Qπ (s, a) = Eπ [rt + γQπ (st+1, at+1) | st = s, at = a] . (3.7)
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The Bellman equations for V ∗ and Q∗ are

V ∗ (s) = R (s) + γmax
a∈A

∑
s′∈S

P (s′ | s, a)V ∗ (s′) , (3.8)

Q∗ (s, a) = R (s) + γ
∑
s′∈S

P (s′ | s, a)max
a∈A

Q∗ (s, a) . (3.9)

If the state space S is finite and the transition model P and the reward model R are known to
the agent, then the optimal action-value function Q∗ can be found by dynamic programming
methods such as value iteration [4], which in turn can directly yield the optimal deterministic
policy π∗ (s) = max

a∈A
Q∗ (s, a). However, this is usually not the case, so model-free learning

methods have been developed to solve an MDP without its model.

3.3 Learning Methods
In model-free reinforcement learning, the agent has no knowledge of the model of the
MDP, i.e. P and R. It learns by trial and error in the environment, collecting trajectories
s0, a0, r0, s1, a1, r1, . . . and updating its policy based on these experience samples. If for an RL
algorithm, the policy it is improving (called target policy) can differ from the policy (called
behavioral policy) that produced the actions in the trajectory samples used to update the target
policy, it is called off-policy. Otherwise, if the target policy and the behavioral policy are
identical, the algorithm is called on-policy. An advantage of an off-policy learning algorithm
is that it can use experience sampled under older-version policies to update the current policy,
thus increasing sample efficiency, Q learning as an example. However, on-policy algorithms
like SARSA and PPO, usually learn faster and with more stability.

3.3.1 Deep Neural Networks as Function Estimator
To be able to numerically model and update the policy function as well as its corresponding value
functions, various machine learning models can be employed as function estimators. Among
them, deep neural network (DNN) is one of the most popular and successful methods due to its
differentiability high expressiveness produced by an arbitrarily large set of internal parameters
in which can fit data patterns from the simplest to the most complicated.
The simplest form of a DNN is called multilayer perceptron (MLP), which consists of layers
of affine transformations (called fully-connected or dense layers) or non-linear functions (called
activation layers). Each dense layer is parametrized by a weight matrix W and a bias vector b,
and transforms its input X to output XW + b. A variety of activation functions are available for
use to add non-linearity to the DNN, like ReLU (the most commonly used), tanh, SELU, etc.
To model the policy function π by a DNN, called the policy network, we use the SoftMax
activation function as its output layer

SoftMax (x) =

(
exp (x1)∑D
i=1 exp (xi)

, . . . ,
exp (xD)∑D
i=1 exp (xi)

)
,

where x ∈ RD is its input value. Note that the output p of SoftMax satisfies
∑D

i=1 pi = 1, so it
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can model a probability distribution over D actions. For a multi-dimensional action space like
ours, several output layers may be used in a row, each yielding the distribution in one action
dimension. Letting θ be all the parameters in the DNN, the parametrized policy can be denoted
as πθ.
Due to the infinite state space, the value function V , if needed in the learning algorithm, has to
be estimated by a model V̂ . Again we use a DNN as the estimator, called the value network.
Letting ϕ be its parameter set, the estimated value function can be denoted as V̂ϕ.
In deep learning (DL), the optimization of DNN parameters, θ as an example, is converted to the
minimization of a real-value differentiable loss function L (θ). In a DL framework like PyTorch
or TensorFlow, the computation of L (θ) is accompanied with the recording of differentiable
operations, which allows automatic gradient computation via the back-propagation mechanism
[22]. After that, an optimizer like SGD or Adam [23], also provided in the DL framework,
is used to update θ in the opposite direction of the gradient ∇θL to minimize L (θ), namely
gradient descent. A hyperparameter of the optimizer called learning rate is used to control the
rate of update.

3.3.2 Value Estimation

Under a certain policy π, we want to improve V̂ so that it gives more accurate estimations of V .
From the Bellman Equation 3.6, we have

Eπ [rt + γVπ (st+1)− Vπ (st)] = 0.

We define δt = rt + γV̂π (st+1)− V̂π (st), which is called the temporal difference (TD) at time
t. It can proved that by minimizing the absolute TD, V̂π will converge to the true value function
Vπ [4]. Therefore we can define a loss function, e.g. LV (ϕ) = Eπ [δ

2
t ] (mean-squared error), to

improve the DNN value estimator V̂ϕ by gradient descent with respect to LV (ϕ).

3.3.3 Policy Gradient

For a parameterized policy πθ, to optimize it towards an optimal policy π∗ is equivalent to
updating its parameters θ so as to maximize the objective

J (θ) = Eπθ
[G0] = Eπθ

[
∞∑
t=0

γtrt

]
,

i.e. the expected return at the start of the MDP. Its gradient, namely policy gradient, is

∇θJ (θ) = Eπθ
[∇θ log πθ (a | s)Qπθ

(s, a)] .

Practically, the expectation is estimated by an empirical average obtained from sampled
trajectories and Qπθ

(s, a) is estimated by the returns, which is unbiased but typically has a
large variance, leading to unstable learning. It can be shown that by introducing an advantage
function

A (s, a) = Q (s, a)− V (s)
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and replacing Q with A in the policy gradient, the sample estimate for∇θJ , still unbiased, can
have much lower variance [24].
Provided with the estimation ∇̂θJ (θ), the loss function Lπ (θ) is defined such that ∇θLπ =

−∇̂θJ . Consequently J (θ) can be maximized via gradient descent with respect to Lπ (θ).

3.3.4 Generalized Advantage Estimation

As the value functions are unknown to the agent, the advantage must be estimated as well. One
commonly used method called generalized advantage estimation (GAE) is defined as [24]

Ât =
T−t∑
k=0

(γλ)k δt+k,

where δt+k is the temporal difference and the parameter λ controls the trade-off between bias
and variance – if λ = 0, Ât is reduced to TD, which introduces bias to the estimation of ∇θJ

unless V̂ is perfectly accurate; while if λ = 1, the estimation of∇θJ effectively becomes Monte
Carlo and is unbiased regardless the choice of V̂ , but the sum of a long chain without decaying
typically results in high variance. Empirically the best value of λ is lower than γ, somewhere
in the range of [0.9, 0.99], assuming a reasonable accuracy of the estimator V̂ [24].

3.3.5 Actor-Critic Architecture

Consequently we have two DNN models in our RL system – πθ, called the actor, and V̂ϕ, called
the critic.
Many state-of-the-art RL algorithms adopt the actor-critic architecture. Its learning procedure
can summarized as: at a certain time interval, the agent samples a trajectory τ , uses τ to compute
the policy lossLπ (θ) and the value lossLV (ϕ), and update θ and ϕ using gradient descent. This
procedure is also illustrated as the diagram in Figure 3.10.

Figure 3.10: The actor-critic architecture (adopted from [5]).
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3.3.6 Proximal Policy Optimization

When training the actor network using vanilla policy gradient, a large learning rate – the rate
in which network parameters are updated in the direction of the policy gradient, is possible
to result in a distinct change of the policy and considerably damage the policy performance.
Thus the learning rate must be kept small, which on the other hand hurts its sample and training
efficiency.
Proximal policy optimization (PPO) [25], motivated by TRPO [26], is a policy optimization
method that aims to take the largest possible optimization step without pushing the new policy
too far away from the old policy, by using a more sophisticated policy loss. The implementation
of PPO commonly adopts the actor-critic architecture, so we also need to design a value loss.
The policy loss and the value loss are defined as follows.

Policy Loss

In PPO, the objective J (θ) is estimated using importance sampling as

LCPI (θ) = Eθ

[
Ât

]
= Eθold

[
πθ (at | st)
πθold (at | st)

Ât

]
,

which is called the “surrogate objective”. CPI refers to conservative policy iteration [27] and
πθ(at|st)
πθold (at|st)

is called the probability ratio. Without constraint, maximization of LCPI can cause
extremely large update of the policy. Thus PPO seeks to constrain the policy update in simple
and efficient ways. There are two variants of PPO: PPO-Penalty and PPO-Clip. PPO-Penalty
penalizes the KL-divergenceKL (πθold∥πθ) to avoid large policy update, while PPO-Clip simply
clips LCPI

t as

LCLIP
t (θ) = min

(
πθ (at | st)
πθold (at | st)

Ât, clip
(

πθ (at | st)
πθold (at | st)

, 1− ε, 1 + ε

)
Ât

)
= min

(
πθ (at | st)
πθold (at | st)

Ât, Ât + ε
∣∣∣Ât

∣∣∣) ,

where ε is a hyperparameter constraining how close the new policy should be to the old policy.
We used PPO-Clip for our problem due to its simplicity and efficiency.
In addition to the clipped loss, an entropy bonus ceH (πθ | st) = ceEa∼πθ

[− log πθ (a | st)] is
used to encourage a higher policy entropy or randomness, in order to ensure more exploration.
The hyperparameter ce is used to balance between exploration and exploitation.
Therefore the complete policy loss is defined as

Lπ (θ) = −Eθold

[
LCLIP
t (θ) + ceH (πθ | st)

]
.

Value Loss

As introduced in Section 3.3.2, we use TD to measure the value estimation error. Another loss
function is required to reduce TD errors throughout the trajectory to a scalar value. Instead of
mean-squared-error, to avoid large updates of the critic network, we use Huber loss
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LHb
ϵ (e) =

{
1
2
e2 |e| ≤ ϵ,

ϵ
(
|e| − 1

2
ϵ
)
|e| > ϵ.

The value loss is then defined as

LV (ϕ) = Eθold

[
LHb
ϵ

(
rt + γV̂ϕ (st+1)− V̂ϕ (st)

)]
.

For |e| ≤ ϵ, LHb
ϵ is quadratic, otherwise linear. Hence the value loss will not grow too fast for a

large TD error.

3.4 Multi-Agent PPO
Since there are multiple BS agents in the multi-cell network environment, and cooperative
actions are required to achieve the desirable outcome of balancing between energy efficiency
and service quality, the problem is formulated in a multi-agent reinforcement learning (MARL)
framework
With some specific modifications, the PPO algorithm has demonstrated strong performance in
cooperative multiagent games [28] like the Starcraft micromanagement challenge (SMAC) or
Google Research Football [29].

3.4.1 DEC-POMDP

Let n be the number of agents in the network system and denote the agents as b1, b2, . . . , bn.
We define the joint action space A = A1 × A2 × . . . × An as the set of joint actions
(a1, a2, . . . , an). In our problem, all the BS agents have the same action space A, as defined
in Eq. 3.4, thus A = An.
An action of a single agent can cause a state transition of the environment, but to simplify the
problem, we assume every time all the agents act simultaneously, so each transition is produced
by joint actions and is in the space S × A× S.
In reality, each BS agent can only observe a part of the whole environment, possibly with
uncertainty. For example, a BS agent is only aware of UEs within its own cell coverage, and if
it increases its output power to improve the QoS of its covered UEs, this may on the other hand
creates more interference to those UEs outside of its coverage. Thus the best action based on
the observation of a single agent is often not the optimal one in terms of the state of the whole
environment.
Formally speaking, if the environment is in state s, an agent bi only has access to its local
observations oi, which contains partial or uncertain information of s. The observation space Oi

of agent bi is the set of observations it can get from any state. We define the joint observation
space O = O1 ×O2 × . . .×On as the set of joint observations (o1, o2, . . . , on).
If the environment is partially observable, then the observation space O and an observation
model Z (o | s) = P [o | s] need be included in the MDP framework to define a partially
observable MDP (POMDP). The framework can be further extended to a decentralized POMDP
(DEC-POMDP) when there are n agents acting in the environment without a centralized
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controller,. To simplify the problem, we assume the observation model is deterministic, i.e.
without uncertainty. Consequently Z becomes a direct mapping S → O such that the joint
observations in state s is (o1, . . . , on) = Z (s).
Since in our multi-cell network environment, we are only concerned with the global state of the
network and we have homogeneous agents, we assume the same reward model R for all agents,
only dependent on the new state after transition, i.e. Ri (s, ai, s

′) = R (s′) for i = 1, 2, . . . , n.
Therefore after each joint actions, all agents share the same reward.
In summary, a DEC-POMDP is defined by a tuple (n, S,O,A, P, Z,R, γ), where S is the state
space, O = O1× . . .×On the joint observation space, A = A1× . . .×An the joint action space,
P (s′ | s, a) = P [st+1 = s′ | st = s, at = a] the transition model, Z (o | s) = Πn

i=1Zi (oi | s)
the joint observation model, R : S × A× S → Rn the reward model, n the number of agents,
and γ the discount parameter.
Our RL problem is an instance of DEC-POMDP with two modifications: shared reward R :

S → R and deterministic observation model Z : S → O.

3.4.2 Policy

We define the joint policy of all agents as

π (a | o) =
n∏

i=1

πi (ai | oi) , a ∈ A, o ∈ O.

3.4.3 Learning in DEC-POMDP

The trajectory is extended to include the observations

τ = (s0, o0, a0, r0, . . . , sT−1, oT−1, aT−1, rT−1, sT ) ,

where ot = (ot,1, . . . , ot,n) is the joint observations and at = (at,1, . . . , at,n) is the joint actions.
In MARL, for one agent, the rest of agents are part of the environment. To optimize its policy,
the agent must develop some knowledge about the environment. However, as all agents are
updating their policies, the environment dynamics for a single agent is also changing, which
can detriment or even prohibit the convergence of training. This is called the non-stationarity
problem of MARL.
Since the agents are homogeneous, we use a single policy network πθ for all agents.This can
reduce the non-stationarity of the environment since the policies of other agents as part of the
environment have lower variance. Hence at,i = πθ (ot,i). We also denote at = πθ (ot) for
convenience. Assuming shared policy and shared reward, the DEC-POMDP is in effect reduced
to a POMDP, whose action space is all agents’ joint action space and observation space is their
joint observation space.
The centralized training and decentralized execution (CTDE) approach can help tackle the non-
stationarity problem. In an actor-critic architecture, the training is centralized and since the critic
has access to the global state of the environment as well as local observations of all agents, the
dynamics of the environment is stationary, which allows it to give stable evaluations of the
states under the agents’ policies, which in turn helps stabilize the policy gradients. After the
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training, the critic is no longer needed and each agent can execute its learned policy in a fully
decentralized manner.

3.4.4 Value Normalization

To stabilize value learning, we standardize the targets of the value function by using running
estimates of the average and Standarddeviation of the value targets. This stabilizes the value
targets, which, without normalization, can drastically change during training. Concretely,
during value learning, the value network will regress to the normalized target values. When
computing the GAE, we will use the running average to denormalize the output of the value
network so that the value outputs are properly scaled. We find that using value normalization
never hurts training and often significantly improves the final performance of MAPPO.

3.4.5 Input Representation to Value Function

For multi-agent CTDE RL algorithms, it is critical that the input to the value network accurately
represents the state of the environment. Otherwise it becomes very difficult, if not impossible,
for the policy to converge to an optimum. The implementation of the state representation
commonly follows two approaches: concatenation of all local observation vectors, and a global
state vector provided by the environment, both of which turn out to be necessary for the learning
of the value network [28]. Therefore we represent the environment state as a concatenation of all
local observations as well as some global information not observed by any agent. The detailed
construction of the state representation is given in Section 3.5.2.

3.4.6 Sample Reuse and Mini-Batches

Due to the importance sampling method in the policy loss of PPO, the same trajectory sample,
called a batch of training data, can be used for updating the policy network for multiple times,
without introducing excessive off-policy bias. The batch can also be splitted into several mini-
batches to further multiply the number of updates for the same amount of training data, thus
increasing sample efficiency. However, It was found in [28] that too many updates per batch
degrades the performance of MAPPO, possibly because of the non-stationary environment.
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3.4.7 Algorithm

Algorithm 2 Multi-Agent Proximal Policy Optimization
Input: initial actor parameters θ, initial critic parameters ϕ, number of
episodes N, trajectory length T, updates per epoch M, GAE parameter λ
for k = 0, 1, ..., N do

Record a trajectory τ =
(s0, o0, a0, r0, . . . , sT−1, oT−1, aT−1, rT−1, sT ) under the policy πθ

Compute TD errors δt = rt + γV̂ϕ (st+1)− V̂ϕ (st), 0 ≤ t < T

Estimate advantages Ât =
∑T−t

i=0 (γλ)i δt, 0 ≤ t < T
πold ← πθ

for j = 0, 1, ..., M do

Lπ (θ) = − 1
T

∑T−1
t=0

[
min

(
πθ(at|ot)
πold(at|ot)

Ât, Ât + ϵ
∣∣∣Ât

∣∣∣)− ceH (πθ | st)
]

Update θ using gradient descent w.r.t. Lπ (θ)

LV (ϕ) = 1
T

∑T−1
t=0 LHb

δ (δt)
Update ϕ using gradient descent w.r.t. LV (ϕ)

end for

end for

3.5 Implementation

3.5.1 Reward Design

Suppose during an action interval, the average power consumption of the network is p kW, and
a total of n UEs have quit the environment, which means either their traffic demand has been
finished or the service delay has reached their delay budget. For a UE uk among them, let ravg,k

be its average data rate, i.e. xmax,k−χk

τk
, rreq,k be its required data rate of UE uk, i.e. xmax,k

τmax,k
, and ρk

be their ratio ravg,k
rreq,k

. We design the reward function as

R = wqosξ − wpcp

ξ =
1

n

n∑
k=1

ξk =
1

n

n∑
k=1

{
ρk − 1 ρk < 1,

ϕ
(
1− 1

ρk

)
ρk ≥ 1.

ξk is the reward for the quality of service experienced by UE uk. When dropped, ravg,k < rreq,k

and ρk < 1, so ξk = ρk − 1 is a negative value as penalty, whose magnitude in this case equals
χk

xmax,k
, the ratio of dropped data. When the request is finished, ravg,k ≥ rreq,k and ρk ≥ 1, so

ξk = ϕ
(
1− 1

ρk

)
is a non-negative reward. Note that in this case 1

ρk
= τk

τmax,k
, which can be

interpreted as the ratio of delay to its budget. The relation between ξk and ρk for different values
of the parameter ϕ is shown in Figure 3.11.
When the service completely failed the demand, ξk = −1; when it finished the total demand
“just in time ”, ξk = 0, thus no reward nor penalty; while if its data rate was much higher than
required, there is an upper bound of reward, which is ϕ. Generally we want to set ϕ to a small
value because in comparison to those demands failed to be finished in time and thus dropped,
the data rates of those services finished within the delay budget are much less critical to the



56 | Multi-Agent RL for Energy-Efficient BS control

QoS. Finally, wpc and wqos are parameters used to balance between the QoS reward and the PC
penalty in the reward. We can also neglect the data rate of a service as long as it finishes before
the delay budget by setting ϕ = 0, but provided that other conditions (PC, drop rate, etc.) are
the same, we may still want to encourage the BSs to finish the requests sooner.

0 0.5 1 1.5 2 2.5 3
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Figure 3.11: QoS reward ξ versus the data rate ratio ρ for different values of ϕ.

Parameter Value
wqos 4
wpc 1
ϕ 0.005

Table 3.6: Parameters in the reward function.

According to the parameter values, the BS agents in the network are willing to spend 25W more
PC in total to reduce average drop ratio by 1% or 1W more PC to decrease the average delay by
10% of the delay budget.

3.5.2 Observation and State Representations

For each BS agent bc, its observation is represented by a vector obs ∈ R116:
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obs[0] Power consumption.

obs[1] Number of antennas.

obs[2] Whether accepting new requests.

obs[3...6] Sleep level 0, 1, 2, 3 (binary encoding: 1 for in this level and 0 for not)

obs[7...10] Next sleep level 0, 1, 2, 3 (the same as obs[3...6] if not switching sleep level).

obs[11] Remaining delay to switch to the next sleep level.

obs[12...16] Average traffic demand rate in the signal coverage each minute, for the last 5
minutes.

Let U0 = UEs in the cell coverage of bc, U1 = UEs being served by bc, U2 = UEs in the queue
of bc.
For a setU of UEs, define UEsInfo (U) as the vector (size of U , current sum rate ofU , required
sum rate of U , sum of transmit powers of U , number of UEs in U whose time limit is no more
than a threshold (20ms)).
For i in [0,1,2]:

obs[17+5i...21+5i] UEsInfo (Ui).

For j in [0,1,2,3,4,5], let b′j be the j-th neighbor BS of bc, and U ′j be the set of UEs in the signal
coverage of b′j .

obs[32+14j] Power consumption of b′j in W.

obs[33+14j] Number of antennas of b′j .

obs[34+14j] Whether b′j is accepting new requests.

obs[35+14j...38+14j] Sleep level of b′j .

obs[39+14j] Distance between bc and b′j .

obs[40+j] Average traffic demand rate in the signal coverage of b′j during the last minute.

obs[41+14j...45+14j] UEsInfo
(
U ′j
)
.

Combining all the agent observations, plus some global information, we assume it can
completely describe the environment state. Thus network environment is described by a vector
state ∈ R821:
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state[0] Total power consumption in kW.

state[1] Number of finished UE requests in the last action interval.

state[2] Average of (average data rate / required data rate) for finished UE requests in the last
action interval.

state[3] Number of dropped UE requests in the last action interval.

state[4] Average of (average data rate / required data rate) for dropped UE requests in the last
action interval.

state[5] Required sum rate of all idle UEs.

state[6] Required sum rate of all queued UEs.

state[7] Required sum rate of all UEs being served.

state[8] Current sum rate of all UEs.

state[9+116i...124+116i] The observation of BS bi, for i = 0, 1, . . . , 6.

3.5.3 Neural Network Structure

The actor-critic architecture of the MAPPO algorithm is shown in Figure 3.12. The network
at the left is the critic network and that at the right is the actor network. Both the actor and
the critic are MLP networks. The dimensionality of each layer in the network is also shown by
the numbers surrounded by the angle brackets. The input to the critic network is a vector st
representing the current global environment state, while the input to the actor network is a batch
of vectors ot representing the local observations of all 7 BS agents. The output of the critic is a
scalar value V̂ϕ (st) estimating the state value, and is used in the calculation of the TD error δt.
The output of the actor is 3 batches of vectors, giving the joint action probability distributions
πθ (· | ot) of all agents.
Following the common practices adopted in PPO implementations, we apply normalization to
the state vector, the observation vectors, the output of each hidden layer, and the estimated
advantages, and we use ReLU activation with orthogonal initialization [28]. These techniques
have been shown helpful to stabilize training and improve performance.
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Figure 3.12: Network structure of MAPPO agent.

3.5.4 Training

The batch size T , i.e. the length of trajectories used for MAPPO learning, can have a flexible
range of values, but another common practice in PPO implementations is to use a large batch
size [28]. Therefore, we let the batch size equal to the episode length, so that the network learns
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from trajectories of a full week length. Parallel computation of 42 threads is applied to speed
up simulation and training, and after each trajectory has been gathered, it is used for training the
network for 10 passes (epochs). Due to the reason given in Section 3.4.6, instead of splitting
the trajectory into mini-batches, the training is done via full-batch gradient descent. The whole
training ends after 100 episodes of simulation.
Since there are 3 traffic scenarios, we experiment with 4 kinds of simulation strategies during
training – A, B, C, and RANDOM. For the first three, all episodes of simulation use the
same traffic scenario, but for the last one, each episode randomly chooses a traffic scenario
for simulation.

Parameter Value
Agent timestep 20 ms
Batch size T 50400 steps = 1 episode
Training episodes N 100
Epochs per episode M 10
Discount factor γ 0.99
Actor learning rate ηπ 6e-4
Critic learning rate ηv 5e-4
Number of mini-batches 1
Clip parameter ε 0.2
GAE parameter λ 0.95
Entropy coefficient ce 0.01
Huber loss parameter ϵ 10

Table 3.7: Parameters of MAPPO learning.

3.6 Results and Analysis
The trained MAPPO policy is tested in the time-stepping-based network simulation environ-
ment. It shows its ability to adapt the number of antennas, the different sleep modes, and the
user association of the base stations according to the varying network traffic density throughout
a week to minimize the total energy consumption while preserving a good quality of service.
A certain degree of cooperation has been shown between the BSs, reducing the inter-cell
interference by putting part of the BSs to sleep. The performance of the multi-agent BS
control policy, including energy efficiency and QoS, is compared with several baseline policies,
including an always-on policy, a simple sleeping policy in which any BS with no associated
users will automatically switch to the shallowest sleep mode (SM1), and an RL policy trained
on individual agents without multi-agent cooperation.
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3.6.1 Training Performance

Figure 3.13: Training performance curves for different simulation strategies. The x-axes are the
number of simulation steps during training. The y-axes are the average values of "packet drop
ratio", "power consumption (kW)", "reward", and "entropy of policy distribution", respectively.

Four different simulation strategies were applied during training: A (rural), B (urban), C
(office), and RANDOM. For strategies A, B, and C, the single corresponding traffic scenario
was simulated in all episodes throughout training. For the RANDOM strategy, a random traffic
scenario was chosen for each episode for simulation. We can see from the reward curves in
Figure ?? that for all of these strategies, the MAPPO agent has succeeded in improving its
reward until the reward has converged. Throughout the training, the drop ratio keeps decreasing
and converges to a very low value. The power consumption increases at the beginning of the
training to improve QoS or lower packet drop, but then decreases as the agent learns to save more
energy while preserving a good QoS. It is worth emphasizing that the training performance of
the RANDOM simulation strategy is as good as other strategies with a single traffic scenario.
Therefore, a single policy trained in this RANDOM simulation strategy suffices to adapt to any
of these traffic scenarios during its deployment.
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3.6.2 Policy Visualization
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Figure 3.14: Visualization of the daily decisions of the trained MAPPO policy.

We can see from Figure 3.14 that the MAPPO policy is able to adjust the sleep modes and the
number of antennas of the BSs according to the temporally varying network traffic demand.
During daytime, when there is a higher traffic demand, more BSs are active or in shallower
sleep modes, and almost all of the antennas of each BS are turned on. During nighttime, when
the traffic is less busy, the BSs sleep deeper with less antennas turned on.
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3.6.3 Performance Metrics

To quantitatively measure the performance of the BS control policy, we collect relevant statistics
during the simulation and calculate several performance metrics of the energy saving and the
QoS.
We use energy efficiency (EE) as the metric to measure the energy saving performance of the
BS control policy

EE =
total traffic volume

total energy consumption
[kb/J] .

Since the total traffic volume in our network simulation is approximately constant, the EE is in
reverse proportion to the total energy consumption.
We use drop ratio as the metric of the QoS, defined as

DR =
total data size of dropped traffic
total data size of requested traffic

,

Recall that if the requested traffic of a user is not served within its delay budget, the remaining
traffic demand will be dropped.

3.6.4 Overall Performance Statistics

The numeric values of the overall average performance metrics are also shown in Table 3.8.

policy scenario avg PC (W) avg rate (Mb/s) EE (Mb/J) avg drop (%) energy saving (%)
Always On A 667.263407 84.364559 0.208653 0.000000 0.000000

B 698.308698 82.946281 0.360139 0.000000 0.000000
C 688.036811 82.992174 0.156469 0.000000 0.000000

Auto SM1 A 482.460464 49.728549 0.288529 0.023498 27.695651
B 512.114219 48.986153 0.491005 0.045924 26.663634
C 501.801536 49.075359 0.214539 0.059078 27.067632

MAPPO (wqos = 1.0) A 279.277140 51.035882 0.743922 0.192087 58.145893
B 295.800081 47.639107 0.850045 0.220333 57.640499
C 290.924319 47.317153 0.742144 0.131457 57.716751

MAPPO (wqos = 4.0) A 311.165711 43.827244 0.447362 0.261221 53.366885
B 327.868221 40.571553 0.766904 0.124714 53.048240
C 332.093293 40.618032 0.650142 0.179455 51.733209

MAPPO (wqos = 7.0) A 364.979143 40.974922 0.381361 0.023702 45.302089
B 392.604126 41.428531 0.640431 0.013646 43.777855
C 386.723861 41.254836 0.558299 0.035535 43.793144

MAPPO (ignore interference) A 287.446027 38.961543 0.484227 0.529351 56.921656
B 338.758773 40.055617 0.370466 0.242728 51.488679
C 307.525363 39.185893 0.350073 0.157113 55.303937

MAPPO (no offloading) A 368.197267 47.580268 0.378069 0.754334 44.819802
B 423.042989 52.810545 0.296639 0.419425 39.418915
C 409.894357 52.993895 0.526704 0.382794 40.425519

Table 3.8: Performance statistics of different policies. The "energy saving" in the last column
uses "Always On" policy as the reference. Unless specified, the default value of wqos for a
MAPPO policy is 4.
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3.6.5 Comparison with Baselines
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Figure 3.15: Comparisons of daily performance in the urban scenario between a trained MAPPO
policy and baseline policies.

Two baseline policies are developed for performance benchmarking. The always-on policy
simply keeps all the BSs always active with all antennas turned on; the auto-SM1 policy turns
any BS with no associated users into SM1, and wakes up a sleeping BS as soon as a user enters
its signal coverage. The temporal variations of the performance metrics are shown in Figure
3.15 and the overall average of these metrics are shown in Figure 3.16. For the MAPPO policy,
we set the default value of its hyper-parameter wqos as 4.0, because it produces the best trade-off
between energy saving and quality of service.
We can see that the auto-SM1 policy can already save a significant amount of energy, but the
MAPPO policy is even more energy efficient, introducing a negligible amount of packet drop.
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Figure 3.16: Comparisons of overall performance between a trained MAPPO policy and
baseline policies.

3.6.6 Effect of Parameter wqos

Keeping other hyper-parameters the same, we vary the value of wqos in the reward function of
MAPPO to investigate its effect on the energy efficiency and the QoS. As shown in Figure 3.17
and 3.18, a higher wqos enforces less packet drop and higher network throughput (sum rate)
and QoS. This discourages BS sleeping, thus considerably increasing power consumption and
reducing energy saving. Although a higher wqos increases the throughput, the improvement is
not significant, so the energy efficiency still decreases.
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(d) Network throughput.

Figure 3.17: Comparisons of daily performance in the urban scenario among MAPPO policies
with different values of wqos in the reward.
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Figure 3.18: Comparisons of overall performance among MAPPO policies with different values
of wqos in the reward.
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3.6.7 Consideration of Interference
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Figure 3.19: Comparisons of daily performance in the urban scenario between two MAPPO
policies trained with and without consideration of the inter-cell interference.
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Figure 3.20: Comparisons of overall performance between two MAPPO policies trained with
and without consideration of the inter-cell interference.

The zero-force precoding of the massive MIMO channel eliminates the interference between
user equipments served by the same BS, but interference between those served by different BSs
still exists. The multi-agent BS control policy should be aware of this inter-cell interference and
try to procure a collaboration between BSs to reduce it, thus improving energy efficiency, by
adaptively switching off some BSs. Here we compare the performance of two MAPPO policies,
one trained with the knowledge of inter-cell interference, the other ignorant of it, in a simulation
environment where this interference exists. The results are shown in Figure 3.19 and 3.20.
We can see that the ignorance of interference makes the agents over-optimistic about their data
rates, thus leading to more sleeps. As a result, there are more packet drops, but the total power
consumption goes a bit lower.

3.6.8 Effect of Offloading

Finally we consider the effect of user offloading in the BS control policy. When a user arrives in
the network, as described in Subsection 3.1.8, it will first send a service request to the BS with
the best estimated signal gain. In our service model the BS can decide whether to accept the
request or to offload this UE to another BS. We want to investigate how this factor of offloading
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Figure 3.21: Comparisons of daily performance in the urban scenario between MAPPO policies
enabling and disabling offloading.
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Figure 3.22: Comparisons of overall performance between MAPPO policies enabling and
disabling offloading.
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improve the performance of the BS control policy, in comparison to that in a network without
user offloading, where a BS will always accept the service request and attach the new UE to
itself. As we can see in Figure 3.21 and 3.22, with offloading, sleeping BSs can sleep longer
and deeper, letting active neighbor BSs serve UEs in the signal coverage. Otherwise, it has to
wake up to serve these UEs, both increasing service delay (consequently packet drop) and power
consumption.

3.6.9 Computational Overhead

The number of CPU operations for a single forward pass of each layer in the actor network has
been calculated and shown in Table 3.9. Assuming 7 BS agents and a decision frequency of
50 Hz, the total computational cost of all agents in the network is calculated in Gflops (flops
standing for floating point operations per second). Assuming further that the computational
efficiency of a BS is 12.8 Gflops/W, as given in Table 3.3, we can estimate the power
consumption of the computation of the multi-agent BS decisions. It turns out that the PC is
very small, less than 0.01 W. Therefore, in comparison to the PC the algorithm is able to save
in the multi-BS network, its own PC can be regarded as negligible.

Layer Single pass ops Total Gflops PC (mW)
LayerNorm(116) 1740 0.000609 0.047578
Dense(116, 64, activation=relu) 104384 0.036534 2.854250
LayerNorm(64) 899 0.000315 0.024582
Dense(64, 64, activation=relu) 57792 0.020227 1.580250
LayerNorm(64) 899 0.000315 0.024582
Dense(64, 64, activation=relu) 57792 0.020227 1.580250
LayerNorm(64) 899 0.000315 0.024582
Dense(64, 3, activation=softmax) 2814 0.000985 0.076945
Dense(64, 4, activation=softmax) 3752 0.001313 0.102594
Dense(64, 3, activation=softmax) 2814 0.000985 0.076945
TOTAL 233785 0.081825 6.392559

Table 3.9: Computation and energy overhead of the multi-agent BS control.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions
This thesis consists of two parts: (1) the classification of cellular traffic with a consideration
of the different packet delay budgets of network services and (2) cooperative base station
control of antennas, advanced sleep modes, and user association in the 5G network using
multi-agent reinforcement learning (MARL). We divided the delay requirements of different
services into three categories: delay stringent, delay sensitive, and delay tolerant. In order to
classify the mobile network cells, we vectorize the average weekly traffic for each delay category
and used unsupervised machine learning to cluster the vectorized cells. FFT is used in the
vectorization to extract different periodities, filter out the noise, and reduce the dimensionality
of the vectorization. A outlier detection algorithm based on the K-nearest-neighbor method
is used to remove the cells with peculiar traffic patterns and K-means is used to cluster the
rest of the cells. Based on Davies-Bouldin (DBI) score, the best number of clusters turned
out to be 4. By visualizing the average weekly traffic patterns in different service categories,
analyzing the average traffic density, and observing the geographic distribution of different
cell clusters, these four cell clusters can be approximately interpreted as low-traffic, rural or
suburban, urban, and workplace. This clustering result can be useful for further network traffic
analysis for applications like base station deployment, resource allocation, land use detection,
etc. In addition, the cell classification provides different traffic scenarios simulated in the RL
environment of the second part of work.
To investigate the potential of MARL in the application of cooperative 5G BS control for
dynamic energy saving, we implemented a learning environment simulating a network of 7
BSs with randomly arriving users following a pre-defined traffic pattern, where each BS can
control its antennas, sleeping, and user association. Three sleep modes with different wake-
up delays and power-saving ratios are available to the BSs, owing to new features in the 5G
technology. The BS agents were jointly rewarded for energy saving and packet delay reduction,
and penalized for packet dropping. MAPPO with an actor-critic architecture is used to train the
policy. In our investigation, the trained MAPPO policy is able to save about 50% of energy in
comparison with the scenario that all BSs are always active with all their antennas. Another
policy we call Auto-SM1 is also used as a benchmark, in which a BS sleeps in the shallowest
sleep mode when it has no users to serve. The Auto-SM1 can save about 25% of energy without
incurring any additional dropping. With regard to QoS, the MAPPO policy has an additional
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0.2-0.5% of packet drop ratio. The ability to control user association allows a sleeping BS to
offload arriving UEs in its cell to an active neighbor BS, thus avoiding waking up and additional
service delay. In the simulation, this means 20-50% less packet drop and 5-10% more energy
saving. The zero-forcing precoding in massive MIMO eliminates the intra-cell interference, but
the inter-cell interference still has a critical affect on the QoS for the UEs. The control policy
should also take interference into account, or else it will incur a dramatic increase in packet
drop.
In addition to the technical contributions of this thesis, the work is also related to the
United Nations’ Sustainable Development Goals (SDGs), particularly SDG 7: Affordable
and Clean Energy, and SDG 11: Sustainable Cities and Communities. SDG 7 aims to
ensure access to affordable, reliable, sustainable, and modern energy for all, and our research
addresses the challenge of reducing energy consumption in 5G networks. By proposing a
multi-agent reinforcement learning-based algorithm for energy-efficient and cooperative base
station control, we have achieved a significant reduction in network energy consumption while
maintaining QoS for users. This has the potential to contribute to sustainable development by
reducing the carbon footprint and making 5G networks more energy-efficient. Additionally, our
work contributes to SDG 11, which focuses on building sustainable cities and communities.
The classification of cellular traffic based on the delay requirements of network services can
be useful for the development of smart cities that can provide better mobile network services to
their residents with more efficient usage of network resources. Our work shows how technology,
specifically AI and machine learning, can contribute to sustainable development goals by
improving the efficiency of energy consumption and creating smarter and more sustainable
cities.

4.2 Future work
We propose the following different directions in which future work could further advance the
state of the art in multi-agent reinforcement learning for dynamic BS control to reduce energy
consumption, and ultimately contribute to the development of more energy-efficient and high-
performing next-generation wireless networks.

Improved Network Model and Algorithm

One potential direction for future work is to develop more sophisticated models of the network,
which could lead to more accurate predictions and better performance in terms of energy
saving and QoS. Additionally, more advanced power allocation algorithms could be developed
to improve the efficiency of the base station sleeping strategy. This could involve combining
reinforcement learning with other optimization techniques, such as convex optimization or game
theory.

Fine-Tuned QoS and State Representation

Another area for future work is to further refine the treatment of different QoS requirements.
This could involve developing more sophisticated metrics to evaluate the quality of service
provided to different users or applications. Additionally, more detailed state representations of
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user equipment could be explored, which could lead to more accurate modeling and prediction
of user behavior.

More Comprehensive Performance Benchmarking

Another important direction for future work is to compare the proposed multi-agent reinforce-
ment learning approach with other RL algorithms such as DQN, as well as with other MARL
algorithms such as QMix or MADDPG. This could provide valuable insights into the strengths
and weaknesses of the proposed approach and help to identify areas where further improvements
could be made.

End-to-End Optimization

In addition to improving the model and algorithm, future work could also explore the end-to-end
optimization of the network, including the joint design of radio, fronthaul, and cloud computing
resources. This could involve developing reinforcement learning algorithms for such a design,
and would require a holistic approach to network optimization that takes into account the entire
network architecture and its various components.

Risk-Aware Reinforcement Learning and Dynamic Functional Split Optimization

Finally, future work could also explore risk-aware reinforcement learning and dynamic func-
tional split optimization based on user delay requirements. This could involve developing new
RL algorithms that take into account the potential risks associated with different actions, as
well as developing new optimization techniques to dynamically adjust the functional split of the
network based on changing user requirements.
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