Mobile Traffic Classification
and Multi-Cell Base Station
Control for Energy-Efficient
5G Networks

TIANZHANG CAI

Master’'s Programme, Machine Learning, 120 credits
Date: March 6, 2023

Supervisor: Ozlem Tugfe Demir

Examiner: Cicek Cavdar
School of Electrical Engineering and Computer Science



© 2023 Tianzhang Cai



Abstract | i

Abstract

The global energy consumption of mobile networks is rapidly increasing due to the exponential
growth of mobile network traffic. The advent of next-generation cellular technologies such
as fifth-generation (5G) and beyond promises higher network throughput and lower latency
but also demands higher power consumption for its denser base station (BS) deployment and
more energy-intensive processors. It is one of the key design pillars of next-generation mobile
networks to improve network energy efficiency. In this thesis, we aim to address this problem
by applying machine learning to analyze mobile traffic and control the operation of 5G BSs
with the goal of reducing network energy consumption while dynamically meeting the network
traffic demand. To obtain some preliminary insights into the temporal and spatial patterns
of mobile network traffic, we first analyze a real-world network flow dataset collected by a
Swedish mobile operator. We find that mobile traffic exhibits a strong periodicity in time and
a distinct locality in space. In order to develop a simulation environment to train and evaluate
the artificial intelligence (Al)-based BS control algorithm, we apply a clustering algorithm to
categorize the network traffic with different latency requirements into five traffic scenarios, e.g.
urban, rural, and office. Other necessary network models are also implemented such as energy
consumption, massive MIMO (multiple-input multiple-output) channel, user association, etc.
in the simulation environment endeavoring to mimic the real-world 5G network.

The main contribution of this thesis is the development of a multi-agent reinforcement learning
algorithm to jointly control the operations of 5G BSs such as multi-level sleeping, antenna
switching, and user association. The algorithm is designed to minimize the total energy
consumption of a multi-cell 5G network while preserving its overall quality of service (QoS).
The trained algorithm has shown its ability to adaptively save energy by switching on/off the
sleep modes and antennas of BSs according to the varying traffic intensity. Moreover, the
multi-agent BS control policy produced by the algorithm has also demonstrated collaborative
behaviours such as user offloading that reduces inter-cell interference which degrades the QoS.
The evaluation results show that in comparison to the always-on configuration, the proposed
algorithm can reduce the total energy consumption of a network by about 50%, double that of
today’s symbol-level sleeping strategy (25%), while with negligible degradation of QoS. The
algorithm is also shown to be robust to variations in the volume and the QoS requirement of the
network traffic after being evaluated in different traffic scenarios.
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Sammanfattning

Mobilnitens globala energiforbrukning 6kar snabbt pa grund av den exponentiella tillvixten av
mobilnétstrafik. Tillkomsten av niista generations cellulira teknologier som 5G och framét lovar
hogre natverksgenomstromning och lagre latens, men kriaver ocksa hogre stromforbrukning for
dess tdtare basstation (BS)-utbyggnad och mer energikridvande processorer. Det dr en av de
viktigaste designpelarna i niista generations mobilnit for att forbéttra nédtverkets energieffek-
tivitet. I det hdr examensarbetet syftar vi till att ta itu med detta problem genom att tillampa
maskininldrning for att analysera mobiltrafik och styra driften av 5G BS:er med mélet att
minska nitverkets energiforbrukning samtidigt som efterfrdgan pa nitverkstrafik dynamiskt
tillgodoses. For att fi ndgra preliminéra insikter om de tidsméssiga och rumsliga monstren
for mobilnitstrafik, analyserar vi forst en verklig nétverksflodesdatauppsittning som samlats
in av en svensk mobiloperator. Vi finner att mobiltrafik uppvisar en stark periodicitet i tid och
en distinkt lokalitet i rymden. For att utveckla en simuleringsmiljo for att trana och utvirdera
den Al-baserade BS-kontrollalgoritmen, tillimpar vi en klustringsalgoritm for att kategorisera
nitverkstrafiken med olika latenskrav i fem trafikscenarier, t.ex. stad, landsbygd och kontor.
Andra nodvindiga nédtverksmodeller implementeras ocksd, sdsom energiférbrukning, massiv
MIMO-kanal, anvindarassociation, etc. i simuleringsmiljon som stravar efter att efterlikna det
verkliga 5G-nétverket.

Det huvudsakliga bidraget frdn denna avhandling &r utvecklingen av en multi-agent fOrstark-
ningsinldrningsalgoritm for att gemensamt styra driften av 5G BS:er som somn pa flera
nivder, antennvixling och anvindarforening. Algoritmen dr utformad for att minimera den
totala energiforbrukningen for ett flercells 5G-nitverk samtidigt som dess Overgripande ser-
vicekvalitet (QoS) bevaras. Den trinade algoritmen har visat sin forméga att adaptivt spara
energi genom att sl pé/stinga av viloldgen och antenner for BS:er enligt den varierande
trafikintensiteten. Dessutom har multi-agent BS-kontrollpolicyn som produceras av algoritmen
ocksé visat samverkansbeteenden sdsom anvindaravlastning som minskar inter-cellinterferens
som forsamrar QoS. Utvirderingsresultaten visar att den foreslagna algoritmen kan minska
den totala energiférbrukningen for ett nétverk med cirka 50%, dubbelt s& stor som dagens
sovstrategi pd symbolniva (25%), jamfort med konfigurationen som alltid &r pé. forsdmring av
QoS. Algoritmen har ocksa visat sig vara robust mot variationer i volymen och QoS-kravet for
ndtverkstrafiken efter att ha utvérderats i olika trafikscenarier.
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Chapter 1

Introduction

1.1 Background

Recent years have seen exponential growth in global mobile network traffic, estimated to double
every two years, reaching 115 EB (115 x 10'® bytes) per month by the end of 2022, as shown
in Figure 1.1 [1]. The explosion of traffic has led to a rapid increase in the energy consumption
of global cellular networks, reaching around 293 TWh per year in 2021, accounting for about
1.16% of the global electricity demand [6, 7]. In response to the challenge of global warming
and in line with the United Nations Sustainable Development Goals (SDGs), a majority of
GSMA (Global System for Mobile Communications) members, accounting for 63% of the
global mobile industry by revenue, have commited to science-based targets (SBTs), aiming for
net-zero greenhouse gas emissions by 2050 to limit global warming to well-below 2°C above
pre-industrial levels [8, 9].

Mobile big data analytics and artificial intelligence (AI) are emerging as powerful forces
transforming business and society, and the potential of these technologies to unlock life-
changing benefits is only beginning to be seen. When grounded in ethical principles that protect
privacy, these solutions can truly change the world for the better. PwC estimates that, over
the next 5 years, 150 million people could be positively impacted by mobile big data and Al
solutions, equating to 3% of the world population [10].

1.2 Problem

With the proliferating cellular connectivity, it is becoming increasingly important to attain a
comprehensive understanding of the temporal and geographical patterns of the cellular traffic.
Internet service providers (ISPs) can exploit the traffic patterns in time and space and deploy
dedicated network management or pricing policies in order to improve quality of service (QoS)
and reduce capital or operational expenses, including energy consumption. Pattern recognition
of the cellular traffic can also inform the government of land usage, human activities, and so on.
Analyses of real-world datasets have revealed that cellular traffic possesses a distinctive temporal
periodicity and geographical locality. Machine learning (ML), given the well-organized data
collection provided by ISPs and the distinguishable data patterns, thereafter, can be effectively
applied to classify and predict cellular traffic patterns. The first part of this thesis aims to use ML
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to classify the cellular traffic patterns, to investigate their temporal and geographical distribution
for each class of cells, and to extract a traffic profile in order to generate synthetic mobile traffic
in the network simulation.

The advent of fifth-generation (5G) cellular networks is set to bring about a range of en-
hancements, including lower latency, higher data rates, and wider connectivity, compared to
previous generations. The deployment of a denser network of base stations (BSs) is expected
to accommodate these improvements. However, this densification will result in a considerable
increase in energy consumption, as BSs are the most energy-intensive components of a wireless
network and are responsible for approximately 80% of a network’s energy consumption [11].
Furthermore, the higher bit-rate demands of 5G will require the use of more power-hungry
processors and radio frequency hardware at BSs, leading to an estimated two to three times
higher energy consumption compared to the fourth-generation (4G) BSs [12]. This increase
in energy consumption is not sustainable in the long term, making the deployment of green
networks essential. A green network is one that takes sustainability into account, ensuring that
the network equipment and architecture are energy efficient across varying network conditions.
While 5G presents challenges in terms of energy consumption, it also offers opportunities to
implement new methods for energy conservation.

The traffic of a mobile network is highly dynamic and the latency a user can tolerant is usually
very tight. Furthermore, the control of such mobile network systems as 5G and beyond possesses
a high complexity. A multi-cell network, in addition, requires the collaboration of the BSs to
save energy jointly, which may lead to a different multi-agent policy than the optimal one for
each agent considered separately. Therefore, the required BS control policy must be dynamic,
adaptive, and cooperative in nature. Nowadays, ML and its sub-fields like deep learning and
reinforcement learning (RL) are seen as universal and powerful methods to solve a wide range
of complicated problems. The performance of these methods largely depends on the quantity
and quality of the data used to train the ML models. The availability of data processing
devices and techniques in mobile networks like deep packet inspection (DPI) has enabled
the application of ML in mobile network management and design, including radio resource
allocation, user association, and sleep mode management. These ML-based mechanisms allow
wireless networks to be predictive and proactive with regard to a mercurial mobile traffic
environment so as to improve energy efficiency, as well as the QoS.

1.3 Purpose

The purpose of this thesis is to reduce the energy consumption of mobile networks by leveraging
the flexibility introduced by 5G technology, such as extended sleep periods and adjustable
resource block (RB) sizes, and by designing an autonomous advanced sleep mode (ASM)
management system. This will be achieved through the following subgoals:

1. Classifying the cells based on their network traffic in different delay categories to
investigate the temporal and geographic patterns of cellular traffic in different scenarios.

2. Implementing a multi-cell 5G network simulation environment with realistic modeling
of massive MIMO channels, power consumption, etc., for traffic analysis and RL for BS
control.



4 | Introduction

3. Designing an RL algorithm for multi-agent BS control of antenna switching, ASM
management, and user association in the simulated network, in order to cooperatively
save network power consumption without compromising QoS.

The thesis will assess the potential energy savings of these design approaches and compare them
to two benchmarks: a baseline control policy without any BS sleeping and a simple policy that
BSs automatically switch to the shallowest sleep mode.

This work aims to contribute to the pursuit of SDGs by reducing the carbon footprint of the
information and communication technology (ICT) sector. BS operation accounts for around
80% of the total energy consumption of a mobile network. Improving the energy efficiency of
BSs is therefore a key way to improve the sustainability of mobile networks. The energy-saving
potential of BS control is significant, as mobile traffic varies greatly in time and space, and
a BS can deactivate some of its components during periods of low traffic to reduce its power
consumption without degrading performance.

This thesis prioritizes ethical considerations, crediting and citing any ideas or work used by
other researchers in the references section. Any ethical issues arising from the implementation
of the work are also avoided.

1.4 Research Questions

1. How to make reliable cellular traffic categorization that is aware of network services with
different delay requirements, based on the collected dataset of mobile network traffic
flows?

2. How to realistically model the 5G network including massive MIMO channel, power
consumption, network service, BS sleeping, user equipments, packet drop, etc.?

3. How to generate synthetic mobile traffic based on the cellular traffic categorization to
evaluate the performance of the energy-saving BS control policies?

4. How multi-agent RL. (MARL) can be utilized in adaptively controlling the number of
antennas, user association, and ASMs of multiple BSs that act cooperatively in order to
optimize energy efficiency without compromising network QoS, according to the network
traffic? Which MARL algorithm is best suitable for this task?

5. How to quantitatively measure the performance of different BS control policies and the
advantage of the MARL-based policy over benchmark policies?

1.5 Research Methodology

In this research, we apply a sequence of procedures like data cleaning, temporal aggregation,
and discrete Fourier transform (DFT) to produce weekly profiles that characterize the cellular
traffic. The data was collected by a Swedish mobile operator, containing sampled records
with detailed network flow information, including time duration, traffic volume, application
name, etc. Due to ethical considerations and to ensure trust, accountability, mutual respect,
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and fairness, sensitive information such as the locations of most BSs are not exposed and all
users were anonymized. Machine learning approaches are applied to classify the cells and the
temporal and spatial patterns of each category of cellular traffic are analyzed.

In order to tackle the problem of energy-efficient BS operation in multi-cell 5G networks, we
develop Al algorithms to achieve dynamic and cooperative multi-agent BS control. We first
develop a 5G network simulation environment with synthetic traffic following the patterns
of previously obtained cellular traffic categories. Then a MARL agent is trained in this
environment to produce a desirable BS control policy. The algorithms were evaluated through
in the simulation and compared to multiple baselines, including a vanilla system without any
energy saving mechanisms, and a system with a simple policy that automatically puts idle BSs
to the shallowest sleep mode.

1.6 Delimitations

The focus of this thesis is on reducing the total energy consumption of multiple BSs in a multi-
cell network.

The scope of this thesis is limited to the development and evaluation of a MARL algorithm
for controlled BS sleeping to save energy. Specifically, the thesis proposes a novel approach
to address the problem of balancing energy consumption and QoS in wireless networks using
a MARL approach. The thesis presents a mathematical model for representing the power
consumption of a BS in both operational and idle modes, and proposes an Al-based algorithm
to solve the optimization problem. The thesis uses simulations to evaluate the performance of
the proposed algorithm and its variations in terms of energy saving and QoS improvement.

However, the thesis has several limitations. Firstly, the proposed model for power consumption
may not completely reflect the behavior of real-world BSs, and further work is needed to
develop a more accurate model. Secondly, the proposed algorithm may not be scalable to
larger networks, and further research is needed to investigate the algorithm’s performance
under different network topologies and traffic conditions. Thirdly, the thesis assumes that user
QoS requirements are fixed and does not consider the dynamic nature of user demands in
practice. Future work could explore dynamic user demands and adapt the algorithm to meet
these demands.

In addition, the thesis proposes several directions for future work, including improving the
network model and algorithm, refining the treatment of different QoS requirements, comparing
the proposed approach with other RL algorithms, exploring the end-to-end optimization of the
network, developing risk-aware RL algorithms, and dynamic functional split optimization based
on user delay requirements.

Finally, the thesis does not address other important issues related to wireless communication
systems, such as security, risk management, or network planning. Further work is needed to
integrate the proposed algorithm into practical wireless communication systems and to evaluate
its performance under different real-world scenarios.

1.7 Structure of the Thesis

The remainder of this thesis is organized as follows:
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» Chapter 2 conducts data analysis of a cellular traffic dataset and ML-based classification
based on the weekly traff